Metamath Proof Explorer


Theorem dfvd2i

Description: Inference form of dfvd2 . (Contributed by Alan Sare, 14-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd2i.1 (    𝜑    ,    𝜓    ▶    𝜒    )
Assertion dfvd2i ( 𝜑 → ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 dfvd2i.1 (    𝜑    ,    𝜓    ▶    𝜒    )
2 dfvd2 ( (    𝜑    ,    𝜓    ▶    𝜒    ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) )
3 1 2 mpbi ( 𝜑 → ( 𝜓𝜒 ) )