Step |
Hyp |
Ref |
Expression |
1 |
|
df-vd3 |
⊢ ( ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ) |
2 |
|
df-3an |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
3 |
2
|
imbi1i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) ) |
4 |
|
impexp |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → 𝜃 ) ) ) |
5 |
3 4
|
bitri |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → 𝜃 ) ) ) |
6 |
|
impexp |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → 𝜃 ) ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |
7 |
5 6
|
bitri |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |
8 |
1 7
|
bitri |
⊢ ( ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |