Description: Inference form of dfvd3an . (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dfvd3ani.1 | ⊢ ( ( 𝜑 , 𝜓 , 𝜒 ) ▶ 𝜃 ) | |
Assertion | dfvd3ani | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfvd3ani.1 | ⊢ ( ( 𝜑 , 𝜓 , 𝜒 ) ▶ 𝜃 ) | |
2 | dfvd3an | ⊢ ( ( ( 𝜑 , 𝜓 , 𝜒 ) ▶ 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ) | |
3 | 1 2 | mpbi | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |