Metamath Proof Explorer


Theorem dfvd3ani

Description: Inference form of dfvd3an . (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd3ani.1 (    (    𝜑    ,    𝜓    ,    𝜒    )    ▶    𝜃    )
Assertion dfvd3ani ( ( 𝜑𝜓𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 dfvd3ani.1 (    (    𝜑    ,    𝜓    ,    𝜒    )    ▶    𝜃    )
2 dfvd3an ( (    (    𝜑    ,    𝜓    ,    𝜒    )    ▶    𝜃    ) ↔ ( ( 𝜑𝜓𝜒 ) → 𝜃 ) )
3 1 2 mpbi ( ( 𝜑𝜓𝜒 ) → 𝜃 )