Metamath Proof Explorer


Theorem dfvd3i

Description: Inference form of dfvd3 . (Contributed by Alan Sare, 14-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd3i.1 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    )
Assertion dfvd3i ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 dfvd3i.1 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    )
2 dfvd3 ( (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) )
3 1 2 mpbi ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )