Metamath Proof Explorer


Theorem dfvd3ir

Description: Right-to-left inference form of dfvd3 . (Contributed by Alan Sare, 14-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd3ir.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
Assertion dfvd3ir (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    )

Proof

Step Hyp Ref Expression
1 dfvd3ir.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
2 dfvd3 ( (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) )
3 1 2 mpbir (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    )