Metamath Proof Explorer


Theorem dgr1term

Description: The degree of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypothesis coe1term.1 𝐹 = ( 𝑧 ∈ ℂ ↦ ( 𝐴 · ( 𝑧𝑁 ) ) )
Assertion dgr1term ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℕ0 ) → ( deg ‘ 𝐹 ) = 𝑁 )

Proof

Step Hyp Ref Expression
1 coe1term.1 𝐹 = ( 𝑧 ∈ ℂ ↦ ( 𝐴 · ( 𝑧𝑁 ) ) )
2 1 coe1termlem ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( coeff ‘ 𝐹 ) = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ∧ ( 𝐴 ≠ 0 → ( deg ‘ 𝐹 ) = 𝑁 ) ) )
3 2 simprd ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ≠ 0 → ( deg ‘ 𝐹 ) = 𝑁 ) )
4 3 3impia ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝐴 ≠ 0 ) → ( deg ‘ 𝐹 ) = 𝑁 )
5 4 3com23 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℕ0 ) → ( deg ‘ 𝐹 ) = 𝑁 )