Step |
Hyp |
Ref |
Expression |
1 |
|
dgrco.1 |
⊢ 𝑀 = ( deg ‘ 𝐹 ) |
2 |
|
dgrco.2 |
⊢ 𝑁 = ( deg ‘ 𝐺 ) |
3 |
|
dgrco.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
4 |
|
dgrco.4 |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
5 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
6 |
5 3
|
sselid |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
7 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
9 |
1 8
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
10 |
|
breq2 |
⊢ ( 𝑥 = 0 → ( ( deg ‘ 𝑓 ) ≤ 𝑥 ↔ ( deg ‘ 𝑓 ) ≤ 0 ) ) |
11 |
10
|
imbi1d |
⊢ ( 𝑥 = 0 → ( ( ( deg ‘ 𝑓 ) ≤ 𝑥 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ↔ ( ( deg ‘ 𝑓 ) ≤ 0 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) |
12 |
11
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑥 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ↔ ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 0 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) |
13 |
12
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑥 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ↔ ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 0 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) ) |
14 |
|
breq2 |
⊢ ( 𝑥 = 𝑑 → ( ( deg ‘ 𝑓 ) ≤ 𝑥 ↔ ( deg ‘ 𝑓 ) ≤ 𝑑 ) ) |
15 |
14
|
imbi1d |
⊢ ( 𝑥 = 𝑑 → ( ( ( deg ‘ 𝑓 ) ≤ 𝑥 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ↔ ( ( deg ‘ 𝑓 ) ≤ 𝑑 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑥 = 𝑑 → ( ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑥 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ↔ ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑑 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑥 = 𝑑 → ( ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑥 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ↔ ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑑 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) ) |
18 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ( deg ‘ 𝑓 ) ≤ 𝑥 ↔ ( deg ‘ 𝑓 ) ≤ ( 𝑑 + 1 ) ) ) |
19 |
18
|
imbi1d |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ( ( deg ‘ 𝑓 ) ≤ 𝑥 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ↔ ( ( deg ‘ 𝑓 ) ≤ ( 𝑑 + 1 ) → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑥 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ↔ ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ ( 𝑑 + 1 ) → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) |
21 |
20
|
imbi2d |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑥 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ↔ ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ ( 𝑑 + 1 ) → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) ) |
22 |
|
breq2 |
⊢ ( 𝑥 = 𝑀 → ( ( deg ‘ 𝑓 ) ≤ 𝑥 ↔ ( deg ‘ 𝑓 ) ≤ 𝑀 ) ) |
23 |
22
|
imbi1d |
⊢ ( 𝑥 = 𝑀 → ( ( ( deg ‘ 𝑓 ) ≤ 𝑥 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ↔ ( ( deg ‘ 𝑓 ) ≤ 𝑀 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) |
24 |
23
|
ralbidv |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑥 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ↔ ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑀 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) |
25 |
24
|
imbi2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑥 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ↔ ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑀 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) ) |
26 |
|
dgrcl |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐺 ) ∈ ℕ0 ) |
27 |
4 26
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐺 ) ∈ ℕ0 ) |
28 |
2 27
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
29 |
28
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → 𝑁 ∈ ℂ ) |
31 |
30
|
mul02d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → ( 0 · 𝑁 ) = 0 ) |
32 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → ( deg ‘ 𝑓 ) ≤ 0 ) |
33 |
|
dgrcl |
⊢ ( 𝑓 ∈ ( Poly ‘ ℂ ) → ( deg ‘ 𝑓 ) ∈ ℕ0 ) |
34 |
33
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → ( deg ‘ 𝑓 ) ∈ ℕ0 ) |
35 |
34
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → 0 ≤ ( deg ‘ 𝑓 ) ) |
36 |
34
|
nn0red |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → ( deg ‘ 𝑓 ) ∈ ℝ ) |
37 |
|
0re |
⊢ 0 ∈ ℝ |
38 |
|
letri3 |
⊢ ( ( ( deg ‘ 𝑓 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( deg ‘ 𝑓 ) = 0 ↔ ( ( deg ‘ 𝑓 ) ≤ 0 ∧ 0 ≤ ( deg ‘ 𝑓 ) ) ) ) |
39 |
36 37 38
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → ( ( deg ‘ 𝑓 ) = 0 ↔ ( ( deg ‘ 𝑓 ) ≤ 0 ∧ 0 ≤ ( deg ‘ 𝑓 ) ) ) ) |
40 |
32 35 39
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → ( deg ‘ 𝑓 ) = 0 ) |
41 |
40
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → ( ( deg ‘ 𝑓 ) · 𝑁 ) = ( 0 · 𝑁 ) ) |
42 |
31 41 40
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → ( ( deg ‘ 𝑓 ) · 𝑁 ) = ( deg ‘ 𝑓 ) ) |
43 |
|
fconstmpt |
⊢ ( ℂ × { ( 𝑓 ‘ 0 ) } ) = ( 𝑦 ∈ ℂ ↦ ( 𝑓 ‘ 0 ) ) |
44 |
|
0dgrb |
⊢ ( 𝑓 ∈ ( Poly ‘ ℂ ) → ( ( deg ‘ 𝑓 ) = 0 ↔ 𝑓 = ( ℂ × { ( 𝑓 ‘ 0 ) } ) ) ) |
45 |
44
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → ( ( deg ‘ 𝑓 ) = 0 ↔ 𝑓 = ( ℂ × { ( 𝑓 ‘ 0 ) } ) ) ) |
46 |
40 45
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → 𝑓 = ( ℂ × { ( 𝑓 ‘ 0 ) } ) ) |
47 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
48 |
|
plyf |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → 𝐺 : ℂ ⟶ ℂ ) |
49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → 𝐺 : ℂ ⟶ ℂ ) |
50 |
49
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) ∧ 𝑦 ∈ ℂ ) → ( 𝐺 ‘ 𝑦 ) ∈ ℂ ) |
51 |
49
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → 𝐺 = ( 𝑦 ∈ ℂ ↦ ( 𝐺 ‘ 𝑦 ) ) ) |
52 |
|
fconstmpt |
⊢ ( ℂ × { ( 𝑓 ‘ 0 ) } ) = ( 𝑥 ∈ ℂ ↦ ( 𝑓 ‘ 0 ) ) |
53 |
46 52
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → 𝑓 = ( 𝑥 ∈ ℂ ↦ ( 𝑓 ‘ 0 ) ) ) |
54 |
|
eqidd |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑦 ) → ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 0 ) ) |
55 |
50 51 53 54
|
fmptco |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → ( 𝑓 ∘ 𝐺 ) = ( 𝑦 ∈ ℂ ↦ ( 𝑓 ‘ 0 ) ) ) |
56 |
43 46 55
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → 𝑓 = ( 𝑓 ∘ 𝐺 ) ) |
57 |
56
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → ( deg ‘ 𝑓 ) = ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) ) |
58 |
42 57
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑓 ) ≤ 0 ) ) → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) |
59 |
58
|
expr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( Poly ‘ ℂ ) ) → ( ( deg ‘ 𝑓 ) ≤ 0 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) |
60 |
59
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 0 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) |
61 |
|
fveq2 |
⊢ ( 𝑓 = 𝑔 → ( deg ‘ 𝑓 ) = ( deg ‘ 𝑔 ) ) |
62 |
61
|
breq1d |
⊢ ( 𝑓 = 𝑔 → ( ( deg ‘ 𝑓 ) ≤ 𝑑 ↔ ( deg ‘ 𝑔 ) ≤ 𝑑 ) ) |
63 |
|
coeq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ∘ 𝐺 ) = ( 𝑔 ∘ 𝐺 ) ) |
64 |
63
|
fveq2d |
⊢ ( 𝑓 = 𝑔 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) ) |
65 |
61
|
oveq1d |
⊢ ( 𝑓 = 𝑔 → ( ( deg ‘ 𝑓 ) · 𝑁 ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) |
66 |
64 65
|
eqeq12d |
⊢ ( 𝑓 = 𝑔 → ( ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ↔ ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) |
67 |
62 66
|
imbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( ( deg ‘ 𝑓 ) ≤ 𝑑 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ↔ ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ) |
68 |
67
|
cbvralvw |
⊢ ( ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑑 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ↔ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) |
69 |
33
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ) → ( deg ‘ 𝑓 ) ∈ ℕ0 ) |
70 |
69
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ) → ( deg ‘ 𝑓 ) ∈ ℝ ) |
71 |
|
nn0p1nn |
⊢ ( 𝑑 ∈ ℕ0 → ( 𝑑 + 1 ) ∈ ℕ ) |
72 |
71
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ) → ( 𝑑 + 1 ) ∈ ℕ ) |
73 |
72
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ) → ( 𝑑 + 1 ) ∈ ℝ ) |
74 |
70 73
|
leloed |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ) → ( ( deg ‘ 𝑓 ) ≤ ( 𝑑 + 1 ) ↔ ( ( deg ‘ 𝑓 ) < ( 𝑑 + 1 ) ∨ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) ) |
75 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ) → 𝑑 ∈ ℕ0 ) |
76 |
|
nn0leltp1 |
⊢ ( ( ( deg ‘ 𝑓 ) ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) → ( ( deg ‘ 𝑓 ) ≤ 𝑑 ↔ ( deg ‘ 𝑓 ) < ( 𝑑 + 1 ) ) ) |
77 |
69 75 76
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ) → ( ( deg ‘ 𝑓 ) ≤ 𝑑 ↔ ( deg ‘ 𝑓 ) < ( 𝑑 + 1 ) ) ) |
78 |
|
fveq2 |
⊢ ( 𝑔 = 𝑓 → ( deg ‘ 𝑔 ) = ( deg ‘ 𝑓 ) ) |
79 |
78
|
breq1d |
⊢ ( 𝑔 = 𝑓 → ( ( deg ‘ 𝑔 ) ≤ 𝑑 ↔ ( deg ‘ 𝑓 ) ≤ 𝑑 ) ) |
80 |
|
coeq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 ∘ 𝐺 ) = ( 𝑓 ∘ 𝐺 ) ) |
81 |
80
|
fveq2d |
⊢ ( 𝑔 = 𝑓 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) ) |
82 |
78
|
oveq1d |
⊢ ( 𝑔 = 𝑓 → ( ( deg ‘ 𝑔 ) · 𝑁 ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) |
83 |
81 82
|
eqeq12d |
⊢ ( 𝑔 = 𝑓 → ( ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ↔ ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) |
84 |
79 83
|
imbi12d |
⊢ ( 𝑔 = 𝑓 → ( ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ↔ ( ( deg ‘ 𝑓 ) ≤ 𝑑 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) |
85 |
84
|
rspcva |
⊢ ( ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) → ( ( deg ‘ 𝑓 ) ≤ 𝑑 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) |
86 |
85
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ) → ( ( deg ‘ 𝑓 ) ≤ 𝑑 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) |
87 |
77 86
|
sylbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ) → ( ( deg ‘ 𝑓 ) < ( 𝑑 + 1 ) → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) |
88 |
|
eqid |
⊢ ( deg ‘ 𝑓 ) = ( deg ‘ 𝑓 ) |
89 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → 𝑓 ∈ ( Poly ‘ ℂ ) ) |
90 |
5 4
|
sselid |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ ℂ ) ) |
91 |
90
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → 𝐺 ∈ ( Poly ‘ ℂ ) ) |
92 |
|
eqid |
⊢ ( coeff ‘ 𝑓 ) = ( coeff ‘ 𝑓 ) |
93 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → 𝑑 ∈ ℕ0 ) |
94 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) |
95 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) |
96 |
|
fveq2 |
⊢ ( 𝑔 = ℎ → ( deg ‘ 𝑔 ) = ( deg ‘ ℎ ) ) |
97 |
96
|
breq1d |
⊢ ( 𝑔 = ℎ → ( ( deg ‘ 𝑔 ) ≤ 𝑑 ↔ ( deg ‘ ℎ ) ≤ 𝑑 ) ) |
98 |
|
coeq1 |
⊢ ( 𝑔 = ℎ → ( 𝑔 ∘ 𝐺 ) = ( ℎ ∘ 𝐺 ) ) |
99 |
98
|
fveq2d |
⊢ ( 𝑔 = ℎ → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( deg ‘ ( ℎ ∘ 𝐺 ) ) ) |
100 |
96
|
oveq1d |
⊢ ( 𝑔 = ℎ → ( ( deg ‘ 𝑔 ) · 𝑁 ) = ( ( deg ‘ ℎ ) · 𝑁 ) ) |
101 |
99 100
|
eqeq12d |
⊢ ( 𝑔 = ℎ → ( ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ↔ ( deg ‘ ( ℎ ∘ 𝐺 ) ) = ( ( deg ‘ ℎ ) · 𝑁 ) ) ) |
102 |
97 101
|
imbi12d |
⊢ ( 𝑔 = ℎ → ( ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ↔ ( ( deg ‘ ℎ ) ≤ 𝑑 → ( deg ‘ ( ℎ ∘ 𝐺 ) ) = ( ( deg ‘ ℎ ) · 𝑁 ) ) ) ) |
103 |
102
|
cbvralvw |
⊢ ( ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ↔ ∀ ℎ ∈ ( Poly ‘ ℂ ) ( ( deg ‘ ℎ ) ≤ 𝑑 → ( deg ‘ ( ℎ ∘ 𝐺 ) ) = ( ( deg ‘ ℎ ) · 𝑁 ) ) ) |
104 |
95 103
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → ∀ ℎ ∈ ( Poly ‘ ℂ ) ( ( deg ‘ ℎ ) ≤ 𝑑 → ( deg ‘ ( ℎ ∘ 𝐺 ) ) = ( ( deg ‘ ℎ ) · 𝑁 ) ) ) |
105 |
88 2 89 91 92 93 94 104
|
dgrcolem2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) |
106 |
105
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ) → ( ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) |
107 |
87 106
|
jaod |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ) → ( ( ( deg ‘ 𝑓 ) < ( 𝑑 + 1 ) ∨ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) |
108 |
74 107
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( Poly ‘ ℂ ) ∧ ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) ) ) → ( ( deg ‘ 𝑓 ) ≤ ( 𝑑 + 1 ) → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) |
109 |
108
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑓 ∈ ( Poly ‘ ℂ ) ) → ( ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) → ( ( deg ‘ 𝑓 ) ≤ ( 𝑑 + 1 ) → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) |
110 |
109
|
ralrimdva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ∀ 𝑔 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 ) ≤ 𝑑 → ( deg ‘ ( 𝑔 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑔 ) · 𝑁 ) ) → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ ( 𝑑 + 1 ) → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) |
111 |
68 110
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑑 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ ( 𝑑 + 1 ) → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) |
112 |
111
|
expcom |
⊢ ( 𝑑 ∈ ℕ0 → ( 𝜑 → ( ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑑 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ ( 𝑑 + 1 ) → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) ) |
113 |
112
|
a2d |
⊢ ( 𝑑 ∈ ℕ0 → ( ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑑 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) → ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ ( 𝑑 + 1 ) → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) ) |
114 |
13 17 21 25 60 113
|
nn0ind |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑀 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) ) |
115 |
9 114
|
mpcom |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑀 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ) |
116 |
9
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
117 |
116
|
leidd |
⊢ ( 𝜑 → 𝑀 ≤ 𝑀 ) |
118 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( deg ‘ 𝑓 ) = ( deg ‘ 𝐹 ) ) |
119 |
118 1
|
eqtr4di |
⊢ ( 𝑓 = 𝐹 → ( deg ‘ 𝑓 ) = 𝑀 ) |
120 |
119
|
breq1d |
⊢ ( 𝑓 = 𝐹 → ( ( deg ‘ 𝑓 ) ≤ 𝑀 ↔ 𝑀 ≤ 𝑀 ) ) |
121 |
|
coeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∘ 𝐺 ) = ( 𝐹 ∘ 𝐺 ) ) |
122 |
121
|
fveq2d |
⊢ ( 𝑓 = 𝐹 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( deg ‘ ( 𝐹 ∘ 𝐺 ) ) ) |
123 |
119
|
oveq1d |
⊢ ( 𝑓 = 𝐹 → ( ( deg ‘ 𝑓 ) · 𝑁 ) = ( 𝑀 · 𝑁 ) ) |
124 |
122 123
|
eqeq12d |
⊢ ( 𝑓 = 𝐹 → ( ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ↔ ( deg ‘ ( 𝐹 ∘ 𝐺 ) ) = ( 𝑀 · 𝑁 ) ) ) |
125 |
120 124
|
imbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( deg ‘ 𝑓 ) ≤ 𝑀 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) ↔ ( 𝑀 ≤ 𝑀 → ( deg ‘ ( 𝐹 ∘ 𝐺 ) ) = ( 𝑀 · 𝑁 ) ) ) ) |
126 |
125
|
rspcv |
⊢ ( 𝐹 ∈ ( Poly ‘ ℂ ) → ( ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 ) ≤ 𝑀 → ( deg ‘ ( 𝑓 ∘ 𝐺 ) ) = ( ( deg ‘ 𝑓 ) · 𝑁 ) ) → ( 𝑀 ≤ 𝑀 → ( deg ‘ ( 𝐹 ∘ 𝐺 ) ) = ( 𝑀 · 𝑁 ) ) ) ) |
127 |
6 115 117 126
|
syl3c |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘ 𝐺 ) ) = ( 𝑀 · 𝑁 ) ) |