| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dgrco.1 | ⊢ 𝑀  =  ( deg ‘ 𝐹 ) | 
						
							| 2 |  | dgrco.2 | ⊢ 𝑁  =  ( deg ‘ 𝐺 ) | 
						
							| 3 |  | dgrco.3 | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 4 |  | dgrco.4 | ⊢ ( 𝜑  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 5 |  | plyssc | ⊢ ( Poly ‘ 𝑆 )  ⊆  ( Poly ‘ ℂ ) | 
						
							| 6 | 5 3 | sselid | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 7 |  | dgrcl | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 8 | 3 7 | syl | ⊢ ( 𝜑  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 9 | 1 8 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 10 |  | breq2 | ⊢ ( 𝑥  =  0  →  ( ( deg ‘ 𝑓 )  ≤  𝑥  ↔  ( deg ‘ 𝑓 )  ≤  0 ) ) | 
						
							| 11 | 10 | imbi1d | ⊢ ( 𝑥  =  0  →  ( ( ( deg ‘ 𝑓 )  ≤  𝑥  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) )  ↔  ( ( deg ‘ 𝑓 )  ≤  0  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) | 
						
							| 12 | 11 | ralbidv | ⊢ ( 𝑥  =  0  →  ( ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑥  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) )  ↔  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  0  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) | 
						
							| 13 | 12 | imbi2d | ⊢ ( 𝑥  =  0  →  ( ( 𝜑  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑥  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) )  ↔  ( 𝜑  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  0  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) ) | 
						
							| 14 |  | breq2 | ⊢ ( 𝑥  =  𝑑  →  ( ( deg ‘ 𝑓 )  ≤  𝑥  ↔  ( deg ‘ 𝑓 )  ≤  𝑑 ) ) | 
						
							| 15 | 14 | imbi1d | ⊢ ( 𝑥  =  𝑑  →  ( ( ( deg ‘ 𝑓 )  ≤  𝑥  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) )  ↔  ( ( deg ‘ 𝑓 )  ≤  𝑑  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) | 
						
							| 16 | 15 | ralbidv | ⊢ ( 𝑥  =  𝑑  →  ( ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑥  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) )  ↔  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑑  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) | 
						
							| 17 | 16 | imbi2d | ⊢ ( 𝑥  =  𝑑  →  ( ( 𝜑  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑥  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) )  ↔  ( 𝜑  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑑  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) ) | 
						
							| 18 |  | breq2 | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ( deg ‘ 𝑓 )  ≤  𝑥  ↔  ( deg ‘ 𝑓 )  ≤  ( 𝑑  +  1 ) ) ) | 
						
							| 19 | 18 | imbi1d | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ( ( deg ‘ 𝑓 )  ≤  𝑥  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) )  ↔  ( ( deg ‘ 𝑓 )  ≤  ( 𝑑  +  1 )  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) | 
						
							| 20 | 19 | ralbidv | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑥  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) )  ↔  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  ( 𝑑  +  1 )  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) | 
						
							| 21 | 20 | imbi2d | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ( 𝜑  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑥  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) )  ↔  ( 𝜑  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  ( 𝑑  +  1 )  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) ) | 
						
							| 22 |  | breq2 | ⊢ ( 𝑥  =  𝑀  →  ( ( deg ‘ 𝑓 )  ≤  𝑥  ↔  ( deg ‘ 𝑓 )  ≤  𝑀 ) ) | 
						
							| 23 | 22 | imbi1d | ⊢ ( 𝑥  =  𝑀  →  ( ( ( deg ‘ 𝑓 )  ≤  𝑥  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) )  ↔  ( ( deg ‘ 𝑓 )  ≤  𝑀  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) | 
						
							| 24 | 23 | ralbidv | ⊢ ( 𝑥  =  𝑀  →  ( ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑥  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) )  ↔  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑀  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) | 
						
							| 25 | 24 | imbi2d | ⊢ ( 𝑥  =  𝑀  →  ( ( 𝜑  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑥  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) )  ↔  ( 𝜑  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑀  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) ) | 
						
							| 26 |  | dgrcl | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ 𝐺 )  ∈  ℕ0 ) | 
						
							| 27 | 4 26 | syl | ⊢ ( 𝜑  →  ( deg ‘ 𝐺 )  ∈  ℕ0 ) | 
						
							| 28 | 2 27 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 29 | 28 | nn0cnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  𝑁  ∈  ℂ ) | 
						
							| 31 | 30 | mul02d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  ( 0  ·  𝑁 )  =  0 ) | 
						
							| 32 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  ( deg ‘ 𝑓 )  ≤  0 ) | 
						
							| 33 |  | dgrcl | ⊢ ( 𝑓  ∈  ( Poly ‘ ℂ )  →  ( deg ‘ 𝑓 )  ∈  ℕ0 ) | 
						
							| 34 | 33 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  ( deg ‘ 𝑓 )  ∈  ℕ0 ) | 
						
							| 35 | 34 | nn0ge0d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  0  ≤  ( deg ‘ 𝑓 ) ) | 
						
							| 36 | 34 | nn0red | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  ( deg ‘ 𝑓 )  ∈  ℝ ) | 
						
							| 37 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 38 |  | letri3 | ⊢ ( ( ( deg ‘ 𝑓 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( deg ‘ 𝑓 )  =  0  ↔  ( ( deg ‘ 𝑓 )  ≤  0  ∧  0  ≤  ( deg ‘ 𝑓 ) ) ) ) | 
						
							| 39 | 36 37 38 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  ( ( deg ‘ 𝑓 )  =  0  ↔  ( ( deg ‘ 𝑓 )  ≤  0  ∧  0  ≤  ( deg ‘ 𝑓 ) ) ) ) | 
						
							| 40 | 32 35 39 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  ( deg ‘ 𝑓 )  =  0 ) | 
						
							| 41 | 40 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  ( ( deg ‘ 𝑓 )  ·  𝑁 )  =  ( 0  ·  𝑁 ) ) | 
						
							| 42 | 31 41 40 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  ( ( deg ‘ 𝑓 )  ·  𝑁 )  =  ( deg ‘ 𝑓 ) ) | 
						
							| 43 |  | fconstmpt | ⊢ ( ℂ  ×  { ( 𝑓 ‘ 0 ) } )  =  ( 𝑦  ∈  ℂ  ↦  ( 𝑓 ‘ 0 ) ) | 
						
							| 44 |  | 0dgrb | ⊢ ( 𝑓  ∈  ( Poly ‘ ℂ )  →  ( ( deg ‘ 𝑓 )  =  0  ↔  𝑓  =  ( ℂ  ×  { ( 𝑓 ‘ 0 ) } ) ) ) | 
						
							| 45 | 44 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  ( ( deg ‘ 𝑓 )  =  0  ↔  𝑓  =  ( ℂ  ×  { ( 𝑓 ‘ 0 ) } ) ) ) | 
						
							| 46 | 40 45 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  𝑓  =  ( ℂ  ×  { ( 𝑓 ‘ 0 ) } ) ) | 
						
							| 47 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 48 |  | plyf | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 50 | 49 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  ∧  𝑦  ∈  ℂ )  →  ( 𝐺 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 51 | 49 | feqmptd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  𝐺  =  ( 𝑦  ∈  ℂ  ↦  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 52 |  | fconstmpt | ⊢ ( ℂ  ×  { ( 𝑓 ‘ 0 ) } )  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑓 ‘ 0 ) ) | 
						
							| 53 | 46 52 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  𝑓  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑓 ‘ 0 ) ) ) | 
						
							| 54 |  | eqidd | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑦 )  →  ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 0 ) ) | 
						
							| 55 | 50 51 53 54 | fmptco | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  ( 𝑓  ∘  𝐺 )  =  ( 𝑦  ∈  ℂ  ↦  ( 𝑓 ‘ 0 ) ) ) | 
						
							| 56 | 43 46 55 | 3eqtr4a | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  𝑓  =  ( 𝑓  ∘  𝐺 ) ) | 
						
							| 57 | 56 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  ( deg ‘ 𝑓 )  =  ( deg ‘ ( 𝑓  ∘  𝐺 ) ) ) | 
						
							| 58 | 42 57 | eqtr2d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑓 )  ≤  0 ) )  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) | 
						
							| 59 | 58 | expr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( Poly ‘ ℂ ) )  →  ( ( deg ‘ 𝑓 )  ≤  0  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) | 
						
							| 60 | 59 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  0  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) | 
						
							| 61 |  | fveq2 | ⊢ ( 𝑓  =  𝑔  →  ( deg ‘ 𝑓 )  =  ( deg ‘ 𝑔 ) ) | 
						
							| 62 | 61 | breq1d | ⊢ ( 𝑓  =  𝑔  →  ( ( deg ‘ 𝑓 )  ≤  𝑑  ↔  ( deg ‘ 𝑔 )  ≤  𝑑 ) ) | 
						
							| 63 |  | coeq1 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓  ∘  𝐺 )  =  ( 𝑔  ∘  𝐺 ) ) | 
						
							| 64 | 63 | fveq2d | ⊢ ( 𝑓  =  𝑔  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( deg ‘ ( 𝑔  ∘  𝐺 ) ) ) | 
						
							| 65 | 61 | oveq1d | ⊢ ( 𝑓  =  𝑔  →  ( ( deg ‘ 𝑓 )  ·  𝑁 )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) | 
						
							| 66 | 64 65 | eqeq12d | ⊢ ( 𝑓  =  𝑔  →  ( ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 )  ↔  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) | 
						
							| 67 | 62 66 | imbi12d | ⊢ ( 𝑓  =  𝑔  →  ( ( ( deg ‘ 𝑓 )  ≤  𝑑  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) )  ↔  ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) ) | 
						
							| 68 | 67 | cbvralvw | ⊢ ( ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑑  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) )  ↔  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) | 
						
							| 69 | 33 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) )  →  ( deg ‘ 𝑓 )  ∈  ℕ0 ) | 
						
							| 70 | 69 | nn0red | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) )  →  ( deg ‘ 𝑓 )  ∈  ℝ ) | 
						
							| 71 |  | nn0p1nn | ⊢ ( 𝑑  ∈  ℕ0  →  ( 𝑑  +  1 )  ∈  ℕ ) | 
						
							| 72 | 71 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) )  →  ( 𝑑  +  1 )  ∈  ℕ ) | 
						
							| 73 | 72 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) )  →  ( 𝑑  +  1 )  ∈  ℝ ) | 
						
							| 74 | 70 73 | leloed | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) )  →  ( ( deg ‘ 𝑓 )  ≤  ( 𝑑  +  1 )  ↔  ( ( deg ‘ 𝑓 )  <  ( 𝑑  +  1 )  ∨  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) ) ) | 
						
							| 75 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) )  →  𝑑  ∈  ℕ0 ) | 
						
							| 76 |  | nn0leltp1 | ⊢ ( ( ( deg ‘ 𝑓 )  ∈  ℕ0  ∧  𝑑  ∈  ℕ0 )  →  ( ( deg ‘ 𝑓 )  ≤  𝑑  ↔  ( deg ‘ 𝑓 )  <  ( 𝑑  +  1 ) ) ) | 
						
							| 77 | 69 75 76 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) )  →  ( ( deg ‘ 𝑓 )  ≤  𝑑  ↔  ( deg ‘ 𝑓 )  <  ( 𝑑  +  1 ) ) ) | 
						
							| 78 |  | fveq2 | ⊢ ( 𝑔  =  𝑓  →  ( deg ‘ 𝑔 )  =  ( deg ‘ 𝑓 ) ) | 
						
							| 79 | 78 | breq1d | ⊢ ( 𝑔  =  𝑓  →  ( ( deg ‘ 𝑔 )  ≤  𝑑  ↔  ( deg ‘ 𝑓 )  ≤  𝑑 ) ) | 
						
							| 80 |  | coeq1 | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔  ∘  𝐺 )  =  ( 𝑓  ∘  𝐺 ) ) | 
						
							| 81 | 80 | fveq2d | ⊢ ( 𝑔  =  𝑓  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( deg ‘ ( 𝑓  ∘  𝐺 ) ) ) | 
						
							| 82 | 78 | oveq1d | ⊢ ( 𝑔  =  𝑓  →  ( ( deg ‘ 𝑔 )  ·  𝑁 )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) | 
						
							| 83 | 81 82 | eqeq12d | ⊢ ( 𝑔  =  𝑓  →  ( ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 )  ↔  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) | 
						
							| 84 | 79 83 | imbi12d | ⊢ ( 𝑔  =  𝑓  →  ( ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) )  ↔  ( ( deg ‘ 𝑓 )  ≤  𝑑  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) | 
						
							| 85 | 84 | rspcva | ⊢ ( ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) )  →  ( ( deg ‘ 𝑓 )  ≤  𝑑  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) | 
						
							| 86 | 85 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) )  →  ( ( deg ‘ 𝑓 )  ≤  𝑑  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) | 
						
							| 87 | 77 86 | sylbird | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) )  →  ( ( deg ‘ 𝑓 )  <  ( 𝑑  +  1 )  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) | 
						
							| 88 |  | eqid | ⊢ ( deg ‘ 𝑓 )  =  ( deg ‘ 𝑓 ) | 
						
							| 89 |  | simprll | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  𝑓  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 90 | 5 4 | sselid | ⊢ ( 𝜑  →  𝐺  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 91 | 90 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  𝐺  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 92 |  | eqid | ⊢ ( coeff ‘ 𝑓 )  =  ( coeff ‘ 𝑓 ) | 
						
							| 93 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  𝑑  ∈  ℕ0 ) | 
						
							| 94 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) | 
						
							| 95 |  | simprlr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) | 
						
							| 96 |  | fveq2 | ⊢ ( 𝑔  =  ℎ  →  ( deg ‘ 𝑔 )  =  ( deg ‘ ℎ ) ) | 
						
							| 97 | 96 | breq1d | ⊢ ( 𝑔  =  ℎ  →  ( ( deg ‘ 𝑔 )  ≤  𝑑  ↔  ( deg ‘ ℎ )  ≤  𝑑 ) ) | 
						
							| 98 |  | coeq1 | ⊢ ( 𝑔  =  ℎ  →  ( 𝑔  ∘  𝐺 )  =  ( ℎ  ∘  𝐺 ) ) | 
						
							| 99 | 98 | fveq2d | ⊢ ( 𝑔  =  ℎ  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( deg ‘ ( ℎ  ∘  𝐺 ) ) ) | 
						
							| 100 | 96 | oveq1d | ⊢ ( 𝑔  =  ℎ  →  ( ( deg ‘ 𝑔 )  ·  𝑁 )  =  ( ( deg ‘ ℎ )  ·  𝑁 ) ) | 
						
							| 101 | 99 100 | eqeq12d | ⊢ ( 𝑔  =  ℎ  →  ( ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 )  ↔  ( deg ‘ ( ℎ  ∘  𝐺 ) )  =  ( ( deg ‘ ℎ )  ·  𝑁 ) ) ) | 
						
							| 102 | 97 101 | imbi12d | ⊢ ( 𝑔  =  ℎ  →  ( ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) )  ↔  ( ( deg ‘ ℎ )  ≤  𝑑  →  ( deg ‘ ( ℎ  ∘  𝐺 ) )  =  ( ( deg ‘ ℎ )  ·  𝑁 ) ) ) ) | 
						
							| 103 | 102 | cbvralvw | ⊢ ( ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) )  ↔  ∀ ℎ  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ ℎ )  ≤  𝑑  →  ( deg ‘ ( ℎ  ∘  𝐺 ) )  =  ( ( deg ‘ ℎ )  ·  𝑁 ) ) ) | 
						
							| 104 | 95 103 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  ∀ ℎ  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ ℎ )  ≤  𝑑  →  ( deg ‘ ( ℎ  ∘  𝐺 ) )  =  ( ( deg ‘ ℎ )  ·  𝑁 ) ) ) | 
						
							| 105 | 88 2 89 91 92 93 94 104 | dgrcolem2 | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) | 
						
							| 106 | 105 | expr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) )  →  ( ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) | 
						
							| 107 | 87 106 | jaod | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) )  →  ( ( ( deg ‘ 𝑓 )  <  ( 𝑑  +  1 )  ∨  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) )  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) | 
						
							| 108 | 74 107 | sylbid | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  ( Poly ‘ ℂ )  ∧  ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) ) ) )  →  ( ( deg ‘ 𝑓 )  ≤  ( 𝑑  +  1 )  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) | 
						
							| 109 | 108 | expr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  𝑓  ∈  ( Poly ‘ ℂ ) )  →  ( ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) )  →  ( ( deg ‘ 𝑓 )  ≤  ( 𝑑  +  1 )  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) | 
						
							| 110 | 109 | ralrimdva | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( ∀ 𝑔  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑔 )  ≤  𝑑  →  ( deg ‘ ( 𝑔  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑔 )  ·  𝑁 ) )  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  ( 𝑑  +  1 )  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) | 
						
							| 111 | 68 110 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑑  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) )  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  ( 𝑑  +  1 )  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) | 
						
							| 112 | 111 | expcom | ⊢ ( 𝑑  ∈  ℕ0  →  ( 𝜑  →  ( ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑑  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) )  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  ( 𝑑  +  1 )  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) ) | 
						
							| 113 | 112 | a2d | ⊢ ( 𝑑  ∈  ℕ0  →  ( ( 𝜑  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑑  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) )  →  ( 𝜑  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  ( 𝑑  +  1 )  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) ) | 
						
							| 114 | 13 17 21 25 60 113 | nn0ind | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝜑  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑀  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) ) | 
						
							| 115 | 9 114 | mpcom | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑀  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) | 
						
							| 116 | 9 | nn0red | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 117 | 116 | leidd | ⊢ ( 𝜑  →  𝑀  ≤  𝑀 ) | 
						
							| 118 |  | fveq2 | ⊢ ( 𝑓  =  𝐹  →  ( deg ‘ 𝑓 )  =  ( deg ‘ 𝐹 ) ) | 
						
							| 119 | 118 1 | eqtr4di | ⊢ ( 𝑓  =  𝐹  →  ( deg ‘ 𝑓 )  =  𝑀 ) | 
						
							| 120 | 119 | breq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( deg ‘ 𝑓 )  ≤  𝑀  ↔  𝑀  ≤  𝑀 ) ) | 
						
							| 121 |  | coeq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓  ∘  𝐺 )  =  ( 𝐹  ∘  𝐺 ) ) | 
						
							| 122 | 121 | fveq2d | ⊢ ( 𝑓  =  𝐹  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( deg ‘ ( 𝐹  ∘  𝐺 ) ) ) | 
						
							| 123 | 119 | oveq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( deg ‘ 𝑓 )  ·  𝑁 )  =  ( 𝑀  ·  𝑁 ) ) | 
						
							| 124 | 122 123 | eqeq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 )  ↔  ( deg ‘ ( 𝐹  ∘  𝐺 ) )  =  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 125 | 120 124 | imbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( deg ‘ 𝑓 )  ≤  𝑀  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) )  ↔  ( 𝑀  ≤  𝑀  →  ( deg ‘ ( 𝐹  ∘  𝐺 ) )  =  ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 126 | 125 | rspcv | ⊢ ( 𝐹  ∈  ( Poly ‘ ℂ )  →  ( ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝑀  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) )  →  ( 𝑀  ≤  𝑀  →  ( deg ‘ ( 𝐹  ∘  𝐺 ) )  =  ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 127 | 6 115 117 126 | syl3c | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐹  ∘  𝐺 ) )  =  ( 𝑀  ·  𝑁 ) ) |