Step |
Hyp |
Ref |
Expression |
1 |
|
dgrcolem1.1 |
⊢ 𝑁 = ( deg ‘ 𝐺 ) |
2 |
|
dgrcolem1.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
3 |
|
dgrcolem1.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
dgrcolem1.4 |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
5 |
|
oveq2 |
⊢ ( 𝑦 = 1 → ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) = ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) |
6 |
5
|
mpteq2dv |
⊢ ( 𝑦 = 1 → ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝑦 = 1 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) ) = ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) ) ) |
8 |
|
oveq1 |
⊢ ( 𝑦 = 1 → ( 𝑦 · 𝑁 ) = ( 1 · 𝑁 ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑦 = 1 → ( ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) ) = ( 𝑦 · 𝑁 ) ↔ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) ) = ( 1 · 𝑁 ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑦 = 1 → ( ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) ) = ( 𝑦 · 𝑁 ) ) ↔ ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) ) = ( 1 · 𝑁 ) ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑦 = 𝑑 → ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) = ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) |
12 |
11
|
mpteq2dv |
⊢ ( 𝑦 = 𝑑 → ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝑦 = 𝑑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) ) = ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑦 = 𝑑 → ( 𝑦 · 𝑁 ) = ( 𝑑 · 𝑁 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑦 = 𝑑 → ( ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) ) = ( 𝑦 · 𝑁 ) ↔ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑦 = 𝑑 → ( ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) ) = ( 𝑦 · 𝑁 ) ) ↔ ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑑 + 1 ) → ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) = ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑 + 1 ) ) ) |
18 |
17
|
mpteq2dv |
⊢ ( 𝑦 = ( 𝑑 + 1 ) → ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑 + 1 ) ) ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝑦 = ( 𝑑 + 1 ) → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) ) = ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑 + 1 ) ) ) ) ) |
20 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑑 + 1 ) → ( 𝑦 · 𝑁 ) = ( ( 𝑑 + 1 ) · 𝑁 ) ) |
21 |
19 20
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑑 + 1 ) → ( ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) ) = ( 𝑦 · 𝑁 ) ↔ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑 + 1 ) ) ) ) = ( ( 𝑑 + 1 ) · 𝑁 ) ) ) |
22 |
21
|
imbi2d |
⊢ ( 𝑦 = ( 𝑑 + 1 ) → ( ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) ) = ( 𝑦 · 𝑁 ) ) ↔ ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑 + 1 ) ) ) ) = ( ( 𝑑 + 1 ) · 𝑁 ) ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝑦 = 𝑀 → ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) = ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) |
24 |
23
|
mpteq2dv |
⊢ ( 𝑦 = 𝑀 → ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝑦 = 𝑀 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) ) = ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) |
26 |
|
oveq1 |
⊢ ( 𝑦 = 𝑀 → ( 𝑦 · 𝑁 ) = ( 𝑀 · 𝑁 ) ) |
27 |
25 26
|
eqeq12d |
⊢ ( 𝑦 = 𝑀 → ( ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) ) = ( 𝑦 · 𝑁 ) ↔ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) = ( 𝑀 · 𝑁 ) ) ) |
28 |
27
|
imbi2d |
⊢ ( 𝑦 = 𝑀 → ( ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) ) = ( 𝑦 · 𝑁 ) ) ↔ ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) = ( 𝑀 · 𝑁 ) ) ) ) |
29 |
|
plyf |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → 𝐺 : ℂ ⟶ ℂ ) |
30 |
4 29
|
syl |
⊢ ( 𝜑 → 𝐺 : ℂ ⟶ ℂ ) |
31 |
30
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
32 |
31
|
exp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) = ( 𝐺 ‘ 𝑥 ) ) |
33 |
32
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
34 |
30
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
35 |
33 34
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) = 𝐺 ) |
36 |
35
|
fveq2d |
⊢ ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) ) = ( deg ‘ 𝐺 ) ) |
37 |
36 1
|
eqtr4di |
⊢ ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) ) = 𝑁 ) |
38 |
3
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
39 |
38
|
mulid2d |
⊢ ( 𝜑 → ( 1 · 𝑁 ) = 𝑁 ) |
40 |
37 39
|
eqtr4d |
⊢ ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) ) = ( 1 · 𝑁 ) ) |
41 |
31
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ 𝑥 ∈ ℂ ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
42 |
|
nnnn0 |
⊢ ( 𝑑 ∈ ℕ → 𝑑 ∈ ℕ0 ) |
43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → 𝑑 ∈ ℕ0 ) |
44 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ 𝑥 ∈ ℂ ) → 𝑑 ∈ ℕ0 ) |
45 |
41 44
|
expp1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ 𝑥 ∈ ℂ ) → ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑 + 1 ) ) = ( ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) · ( 𝐺 ‘ 𝑥 ) ) ) |
46 |
45
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑 + 1 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
47 |
|
cnex |
⊢ ℂ ∈ V |
48 |
47
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ℂ ∈ V ) |
49 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ 𝑥 ∈ ℂ ) → ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ∈ V ) |
50 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) |
51 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
52 |
48 49 41 50 51
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ∘f · 𝐺 ) = ( 𝑥 ∈ ℂ ↦ ( ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
53 |
46 52
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑 + 1 ) ) ) = ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ∘f · 𝐺 ) ) |
54 |
53
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑 + 1 ) ) ) ) = ( deg ‘ ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ∘f · 𝐺 ) ) ) |
55 |
54
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑 + 1 ) ) ) ) = ( deg ‘ ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ∘f · 𝐺 ) ) ) |
56 |
|
oveq1 |
⊢ ( ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) → ( ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) + 𝑁 ) = ( ( 𝑑 · 𝑁 ) + 𝑁 ) ) |
57 |
56
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) → ( ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) + 𝑁 ) = ( ( 𝑑 · 𝑁 ) + 𝑁 ) ) |
58 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑑 ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑑 ) ) ) |
59 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑥 ) → ( 𝑦 ↑ 𝑑 ) = ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) |
60 |
41 51 58 59
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑑 ) ) ∘ 𝐺 ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) |
61 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ℂ ⊆ ℂ ) |
62 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → 1 ∈ ℂ ) |
63 |
|
plypow |
⊢ ( ( ℂ ⊆ ℂ ∧ 1 ∈ ℂ ∧ 𝑑 ∈ ℕ0 ) → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑑 ) ) ∈ ( Poly ‘ ℂ ) ) |
64 |
61 62 43 63
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑑 ) ) ∈ ( Poly ‘ ℂ ) ) |
65 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
66 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
67 |
65 66
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → 𝐺 ∈ ( Poly ‘ ℂ ) ) |
68 |
|
addcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝑧 + 𝑤 ) ∈ ℂ ) |
69 |
68
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( 𝑧 + 𝑤 ) ∈ ℂ ) |
70 |
|
mulcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝑧 · 𝑤 ) ∈ ℂ ) |
71 |
70
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( 𝑧 · 𝑤 ) ∈ ℂ ) |
72 |
64 67 69 71
|
plyco |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑑 ) ) ∘ 𝐺 ) ∈ ( Poly ‘ ℂ ) ) |
73 |
60 72
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ∈ ( Poly ‘ ℂ ) ) |
74 |
73
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) → ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ∈ ( Poly ‘ ℂ ) ) |
75 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) |
76 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → 𝑑 ∈ ℕ ) |
77 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
78 |
76 77
|
nnmulcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( 𝑑 · 𝑁 ) ∈ ℕ ) |
79 |
78
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( 𝑑 · 𝑁 ) ≠ 0 ) |
80 |
79
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) → ( 𝑑 · 𝑁 ) ≠ 0 ) |
81 |
75 80
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) ≠ 0 ) |
82 |
|
fveq2 |
⊢ ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) = 0𝑝 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( deg ‘ 0𝑝 ) ) |
83 |
|
dgr0 |
⊢ ( deg ‘ 0𝑝 ) = 0 |
84 |
82 83
|
eqtrdi |
⊢ ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) = 0𝑝 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = 0 ) |
85 |
84
|
necon3i |
⊢ ( ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) ≠ 0 → ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ≠ 0𝑝 ) |
86 |
81 85
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) → ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ≠ 0𝑝 ) |
87 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) → 𝐺 ∈ ( Poly ‘ ℂ ) ) |
88 |
3
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
89 |
|
fveq2 |
⊢ ( 𝐺 = 0𝑝 → ( deg ‘ 𝐺 ) = ( deg ‘ 0𝑝 ) ) |
90 |
89 83
|
eqtrdi |
⊢ ( 𝐺 = 0𝑝 → ( deg ‘ 𝐺 ) = 0 ) |
91 |
1 90
|
syl5eq |
⊢ ( 𝐺 = 0𝑝 → 𝑁 = 0 ) |
92 |
91
|
necon3i |
⊢ ( 𝑁 ≠ 0 → 𝐺 ≠ 0𝑝 ) |
93 |
88 92
|
syl |
⊢ ( 𝜑 → 𝐺 ≠ 0𝑝 ) |
94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → 𝐺 ≠ 0𝑝 ) |
95 |
94
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) → 𝐺 ≠ 0𝑝 ) |
96 |
|
eqid |
⊢ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) |
97 |
96 1
|
dgrmul |
⊢ ( ( ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ∈ ( Poly ‘ ℂ ) ∧ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ≠ 0𝑝 ) ∧ ( 𝐺 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ≠ 0𝑝 ) ) → ( deg ‘ ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ∘f · 𝐺 ) ) = ( ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) + 𝑁 ) ) |
98 |
74 86 87 95 97
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) → ( deg ‘ ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ∘f · 𝐺 ) ) = ( ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) + 𝑁 ) ) |
99 |
|
nncn |
⊢ ( 𝑑 ∈ ℕ → 𝑑 ∈ ℂ ) |
100 |
99
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → 𝑑 ∈ ℂ ) |
101 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
102 |
100 101
|
adddirp1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( ( 𝑑 + 1 ) · 𝑁 ) = ( ( 𝑑 · 𝑁 ) + 𝑁 ) ) |
103 |
102
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) → ( ( 𝑑 + 1 ) · 𝑁 ) = ( ( 𝑑 · 𝑁 ) + 𝑁 ) ) |
104 |
57 98 103
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) → ( ( 𝑑 + 1 ) · 𝑁 ) = ( deg ‘ ( ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ∘f · 𝐺 ) ) ) |
105 |
55 104
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑 + 1 ) ) ) ) = ( ( 𝑑 + 1 ) · 𝑁 ) ) |
106 |
105
|
ex |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑 + 1 ) ) ) ) = ( ( 𝑑 + 1 ) · 𝑁 ) ) ) |
107 |
106
|
expcom |
⊢ ( 𝑑 ∈ ℕ → ( 𝜑 → ( ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑 + 1 ) ) ) ) = ( ( 𝑑 + 1 ) · 𝑁 ) ) ) ) |
108 |
107
|
a2d |
⊢ ( 𝑑 ∈ ℕ → ( ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) = ( 𝑑 · 𝑁 ) ) → ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑 + 1 ) ) ) ) = ( ( 𝑑 + 1 ) · 𝑁 ) ) ) ) |
109 |
10 16 22 28 40 108
|
nnind |
⊢ ( 𝑀 ∈ ℕ → ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) = ( 𝑀 · 𝑁 ) ) ) |
110 |
2 109
|
mpcom |
⊢ ( 𝜑 → ( deg ‘ ( 𝑥 ∈ ℂ ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) = ( 𝑀 · 𝑁 ) ) |