| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dgrcolem1.1 | ⊢ 𝑁  =  ( deg ‘ 𝐺 ) | 
						
							| 2 |  | dgrcolem1.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 3 |  | dgrcolem1.3 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 4 |  | dgrcolem1.4 | ⊢ ( 𝜑  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑦  =  1  →  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 )  =  ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) | 
						
							| 6 | 5 | mpteq2dv | ⊢ ( 𝑦  =  1  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) )  =  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( 𝑦  =  1  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) )  =  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑦  =  1  →  ( 𝑦  ·  𝑁 )  =  ( 1  ·  𝑁 ) ) | 
						
							| 9 | 7 8 | eqeq12d | ⊢ ( 𝑦  =  1  →  ( ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) )  =  ( 𝑦  ·  𝑁 )  ↔  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) )  =  ( 1  ·  𝑁 ) ) ) | 
						
							| 10 | 9 | imbi2d | ⊢ ( 𝑦  =  1  →  ( ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) )  =  ( 𝑦  ·  𝑁 ) )  ↔  ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) )  =  ( 1  ·  𝑁 ) ) ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑦  =  𝑑  →  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 )  =  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) | 
						
							| 12 | 11 | mpteq2dv | ⊢ ( 𝑦  =  𝑑  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) )  =  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝑦  =  𝑑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) )  =  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑦  =  𝑑  →  ( 𝑦  ·  𝑁 )  =  ( 𝑑  ·  𝑁 ) ) | 
						
							| 15 | 13 14 | eqeq12d | ⊢ ( 𝑦  =  𝑑  →  ( ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) )  =  ( 𝑦  ·  𝑁 )  ↔  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑦  =  𝑑  →  ( ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) )  =  ( 𝑦  ·  𝑁 ) )  ↔  ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) ) ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝑑  +  1 )  →  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 )  =  ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑  +  1 ) ) ) | 
						
							| 18 | 17 | mpteq2dv | ⊢ ( 𝑦  =  ( 𝑑  +  1 )  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) )  =  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑  +  1 ) ) ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝑦  =  ( 𝑑  +  1 )  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) )  =  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑  +  1 ) ) ) ) ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑑  +  1 )  →  ( 𝑦  ·  𝑁 )  =  ( ( 𝑑  +  1 )  ·  𝑁 ) ) | 
						
							| 21 | 19 20 | eqeq12d | ⊢ ( 𝑦  =  ( 𝑑  +  1 )  →  ( ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) )  =  ( 𝑦  ·  𝑁 )  ↔  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑  +  1 ) ) ) )  =  ( ( 𝑑  +  1 )  ·  𝑁 ) ) ) | 
						
							| 22 | 21 | imbi2d | ⊢ ( 𝑦  =  ( 𝑑  +  1 )  →  ( ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) )  =  ( 𝑦  ·  𝑁 ) )  ↔  ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑  +  1 ) ) ) )  =  ( ( 𝑑  +  1 )  ·  𝑁 ) ) ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑦  =  𝑀  →  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 )  =  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) | 
						
							| 24 | 23 | mpteq2dv | ⊢ ( 𝑦  =  𝑀  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) )  =  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( 𝑦  =  𝑀  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) )  =  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) | 
						
							| 26 |  | oveq1 | ⊢ ( 𝑦  =  𝑀  →  ( 𝑦  ·  𝑁 )  =  ( 𝑀  ·  𝑁 ) ) | 
						
							| 27 | 25 26 | eqeq12d | ⊢ ( 𝑦  =  𝑀  →  ( ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) )  =  ( 𝑦  ·  𝑁 )  ↔  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  =  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 28 | 27 | imbi2d | ⊢ ( 𝑦  =  𝑀  →  ( ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑦 ) ) )  =  ( 𝑦  ·  𝑁 ) )  ↔  ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  =  ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 29 |  | plyf | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 30 | 4 29 | syl | ⊢ ( 𝜑  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 31 | 30 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 32 | 31 | exp1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( ( 𝐺 ‘ 𝑥 ) ↑ 1 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 33 | 32 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) )  =  ( 𝑥  ∈  ℂ  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 34 | 30 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  ℂ  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 35 | 33 34 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) )  =  𝐺 ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) )  =  ( deg ‘ 𝐺 ) ) | 
						
							| 37 | 36 1 | eqtr4di | ⊢ ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) )  =  𝑁 ) | 
						
							| 38 | 3 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 39 | 38 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  𝑁 )  =  𝑁 ) | 
						
							| 40 | 37 39 | eqtr4d | ⊢ ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 1 ) ) )  =  ( 1  ·  𝑁 ) ) | 
						
							| 41 | 31 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  𝑥  ∈  ℂ )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 42 |  | nnnn0 | ⊢ ( 𝑑  ∈  ℕ  →  𝑑  ∈  ℕ0 ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  𝑑  ∈  ℕ0 ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  𝑥  ∈  ℂ )  →  𝑑  ∈  ℕ0 ) | 
						
							| 45 | 41 44 | expp1d | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  𝑥  ∈  ℂ )  →  ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑  +  1 ) )  =  ( ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 46 | 45 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑  +  1 ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 47 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 48 | 47 | a1i | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ℂ  ∈  V ) | 
						
							| 49 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  𝑥  ∈  ℂ )  →  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 )  ∈  V ) | 
						
							| 50 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  =  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) | 
						
							| 51 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  𝐺  =  ( 𝑥  ∈  ℂ  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 52 | 48 49 41 50 51 | offval2 | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  ∘f   ·  𝐺 )  =  ( 𝑥  ∈  ℂ  ↦  ( ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 53 | 46 52 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑  +  1 ) ) )  =  ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  ∘f   ·  𝐺 ) ) | 
						
							| 54 | 53 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑  +  1 ) ) ) )  =  ( deg ‘ ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  ∘f   ·  𝐺 ) ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) )  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑  +  1 ) ) ) )  =  ( deg ‘ ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  ∘f   ·  𝐺 ) ) ) | 
						
							| 56 |  | oveq1 | ⊢ ( ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 )  →  ( ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  +  𝑁 )  =  ( ( 𝑑  ·  𝑁 )  +  𝑁 ) ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) )  →  ( ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  +  𝑁 )  =  ( ( 𝑑  ·  𝑁 )  +  𝑁 ) ) | 
						
							| 58 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑑 ) )  =  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑑 ) ) ) | 
						
							| 59 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑥 )  →  ( 𝑦 ↑ 𝑑 )  =  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) | 
						
							| 60 | 41 51 58 59 | fmptco | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑑 ) )  ∘  𝐺 )  =  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) | 
						
							| 61 |  | ssidd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ℂ  ⊆  ℂ ) | 
						
							| 62 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 63 |  | plypow | ⊢ ( ( ℂ  ⊆  ℂ  ∧  1  ∈  ℂ  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑑 ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 64 | 61 62 43 63 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑑 ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 65 |  | plyssc | ⊢ ( Poly ‘ 𝑆 )  ⊆  ( Poly ‘ ℂ ) | 
						
							| 66 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 67 | 65 66 | sselid | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  𝐺  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 68 |  | addcl | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑤  ∈  ℂ )  →  ( 𝑧  +  𝑤 )  ∈  ℂ ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑧  ∈  ℂ  ∧  𝑤  ∈  ℂ ) )  →  ( 𝑧  +  𝑤 )  ∈  ℂ ) | 
						
							| 70 |  | mulcl | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑤  ∈  ℂ )  →  ( 𝑧  ·  𝑤 )  ∈  ℂ ) | 
						
							| 71 | 70 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑧  ∈  ℂ  ∧  𝑤  ∈  ℂ ) )  →  ( 𝑧  ·  𝑤 )  ∈  ℂ ) | 
						
							| 72 | 64 67 69 71 | plyco | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑑 ) )  ∘  𝐺 )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 73 | 60 72 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) )  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 75 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) )  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) ) | 
						
							| 76 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  𝑑  ∈  ℕ ) | 
						
							| 77 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  𝑁  ∈  ℕ ) | 
						
							| 78 | 76 77 | nnmulcld | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( 𝑑  ·  𝑁 )  ∈  ℕ ) | 
						
							| 79 | 78 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( 𝑑  ·  𝑁 )  ≠  0 ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) )  →  ( 𝑑  ·  𝑁 )  ≠  0 ) | 
						
							| 81 | 75 80 | eqnetrd | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) )  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  ≠  0 ) | 
						
							| 82 |  | fveq2 | ⊢ ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  =  0𝑝  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( deg ‘ 0𝑝 ) ) | 
						
							| 83 |  | dgr0 | ⊢ ( deg ‘ 0𝑝 )  =  0 | 
						
							| 84 | 82 83 | eqtrdi | ⊢ ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  =  0𝑝  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  0 ) | 
						
							| 85 | 84 | necon3i | ⊢ ( ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  ≠  0  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  ≠  0𝑝 ) | 
						
							| 86 | 81 85 | syl | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) )  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  ≠  0𝑝 ) | 
						
							| 87 | 67 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) )  →  𝐺  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 88 | 3 | nnne0d | ⊢ ( 𝜑  →  𝑁  ≠  0 ) | 
						
							| 89 |  | fveq2 | ⊢ ( 𝐺  =  0𝑝  →  ( deg ‘ 𝐺 )  =  ( deg ‘ 0𝑝 ) ) | 
						
							| 90 | 89 83 | eqtrdi | ⊢ ( 𝐺  =  0𝑝  →  ( deg ‘ 𝐺 )  =  0 ) | 
						
							| 91 | 1 90 | eqtrid | ⊢ ( 𝐺  =  0𝑝  →  𝑁  =  0 ) | 
						
							| 92 | 91 | necon3i | ⊢ ( 𝑁  ≠  0  →  𝐺  ≠  0𝑝 ) | 
						
							| 93 | 88 92 | syl | ⊢ ( 𝜑  →  𝐺  ≠  0𝑝 ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  𝐺  ≠  0𝑝 ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) )  →  𝐺  ≠  0𝑝 ) | 
						
							| 96 |  | eqid | ⊢ ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) ) | 
						
							| 97 | 96 1 | dgrmul | ⊢ ( ( ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  ∈  ( Poly ‘ ℂ )  ∧  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  ≠  0𝑝 )  ∧  ( 𝐺  ∈  ( Poly ‘ ℂ )  ∧  𝐺  ≠  0𝑝 ) )  →  ( deg ‘ ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  ∘f   ·  𝐺 ) )  =  ( ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  +  𝑁 ) ) | 
						
							| 98 | 74 86 87 95 97 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) )  →  ( deg ‘ ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  ∘f   ·  𝐺 ) )  =  ( ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  +  𝑁 ) ) | 
						
							| 99 |  | nncn | ⊢ ( 𝑑  ∈  ℕ  →  𝑑  ∈  ℂ ) | 
						
							| 100 | 99 | adantl | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  𝑑  ∈  ℂ ) | 
						
							| 101 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  𝑁  ∈  ℂ ) | 
						
							| 102 | 100 101 | adddirp1d | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( ( 𝑑  +  1 )  ·  𝑁 )  =  ( ( 𝑑  ·  𝑁 )  +  𝑁 ) ) | 
						
							| 103 | 102 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) )  →  ( ( 𝑑  +  1 )  ·  𝑁 )  =  ( ( 𝑑  ·  𝑁 )  +  𝑁 ) ) | 
						
							| 104 | 57 98 103 | 3eqtr4rd | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) )  →  ( ( 𝑑  +  1 )  ·  𝑁 )  =  ( deg ‘ ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) )  ∘f   ·  𝐺 ) ) ) | 
						
							| 105 | 55 104 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) )  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑  +  1 ) ) ) )  =  ( ( 𝑑  +  1 )  ·  𝑁 ) ) | 
						
							| 106 | 105 | ex | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 )  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑  +  1 ) ) ) )  =  ( ( 𝑑  +  1 )  ·  𝑁 ) ) ) | 
						
							| 107 | 106 | expcom | ⊢ ( 𝑑  ∈  ℕ  →  ( 𝜑  →  ( ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 )  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑  +  1 ) ) ) )  =  ( ( 𝑑  +  1 )  ·  𝑁 ) ) ) ) | 
						
							| 108 | 107 | a2d | ⊢ ( 𝑑  ∈  ℕ  →  ( ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑑 ) ) )  =  ( 𝑑  ·  𝑁 ) )  →  ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ ( 𝑑  +  1 ) ) ) )  =  ( ( 𝑑  +  1 )  ·  𝑁 ) ) ) ) | 
						
							| 109 | 10 16 22 28 40 108 | nnind | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  =  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 110 | 2 109 | mpcom | ⊢ ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  =  ( 𝑀  ·  𝑁 ) ) |