| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dgrco.1 | ⊢ 𝑀  =  ( deg ‘ 𝐹 ) | 
						
							| 2 |  | dgrco.2 | ⊢ 𝑁  =  ( deg ‘ 𝐺 ) | 
						
							| 3 |  | dgrco.3 | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 4 |  | dgrco.4 | ⊢ ( 𝜑  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 5 |  | dgrco.5 | ⊢ 𝐴  =  ( coeff ‘ 𝐹 ) | 
						
							| 6 |  | dgrco.6 | ⊢ ( 𝜑  →  𝐷  ∈  ℕ0 ) | 
						
							| 7 |  | dgrco.7 | ⊢ ( 𝜑  →  𝑀  =  ( 𝐷  +  1 ) ) | 
						
							| 8 |  | dgrco.8 | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  ( Poly ‘ ℂ ) ( ( deg ‘ 𝑓 )  ≤  𝐷  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) ) ) | 
						
							| 9 |  | plyf | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 11 | 10 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 12 |  | plyf | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 13 | 3 12 | syl | ⊢ ( 𝜑  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 14 | 13 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑥 )  ∈  ℂ )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 15 | 11 14 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 16 | 5 | coef3 | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 17 | 3 16 | syl | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 18 |  | dgrcl | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 19 | 3 18 | syl | ⊢ ( 𝜑  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 20 | 1 19 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 21 | 17 20 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑀 )  ∈  ℂ ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( 𝐴 ‘ 𝑀 )  ∈  ℂ ) | 
						
							| 23 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  𝑀  ∈  ℕ0 ) | 
						
							| 24 | 11 23 | expcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 25 | 22 24 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) )  ∈  ℂ ) | 
						
							| 26 | 15 25 | npcand | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  +  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 27 | 26 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  +  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 28 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 29 | 28 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 30 | 15 25 | subcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  ∈  ℂ ) | 
						
							| 31 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) | 
						
							| 32 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) | 
						
							| 33 | 29 30 25 31 32 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  ∘f   +  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  +  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) | 
						
							| 34 | 10 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  ℂ  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 35 | 13 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑦  ∈  ℂ  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑥 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 37 | 11 34 35 36 | fmptco | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐺 )  =  ( 𝑥  ∈  ℂ  ↦  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 38 | 27 33 37 | 3eqtr4rd | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐺 )  =  ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  ∘f   +  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) | 
						
							| 39 | 38 | fveq2d | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐹  ∘  𝐺 ) )  =  ( deg ‘ ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  ∘f   +  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( deg ‘ ( 𝐹  ∘  𝐺 ) )  =  ( deg ‘ ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  ∘f   +  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) ) | 
						
							| 41 | 29 15 25 37 32 | offval2 | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐺 )  ∘f   −  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) | 
						
							| 42 |  | plyssc | ⊢ ( Poly ‘ 𝑆 )  ⊆  ( Poly ‘ ℂ ) | 
						
							| 43 | 42 3 | sselid | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 44 | 42 4 | sselid | ⊢ ( 𝜑  →  𝐺  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 45 |  | addcl | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑤  ∈  ℂ )  →  ( 𝑧  +  𝑤 )  ∈  ℂ ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℂ  ∧  𝑤  ∈  ℂ ) )  →  ( 𝑧  +  𝑤 )  ∈  ℂ ) | 
						
							| 47 |  | mulcl | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑤  ∈  ℂ )  →  ( 𝑧  ·  𝑤 )  ∈  ℂ ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℂ  ∧  𝑤  ∈  ℂ ) )  →  ( 𝑧  ·  𝑤 )  ∈  ℂ ) | 
						
							| 49 | 43 44 46 48 | plyco | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐺 )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 50 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) )  =  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) | 
						
							| 51 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑥 )  →  ( 𝑦 ↑ 𝑀 )  =  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) | 
						
							| 52 | 51 | oveq2d | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑥 )  →  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) )  =  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) | 
						
							| 53 | 11 34 50 52 | fmptco | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) )  ∘  𝐺 )  =  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) | 
						
							| 54 |  | ssidd | ⊢ ( 𝜑  →  ℂ  ⊆  ℂ ) | 
						
							| 55 |  | eqid | ⊢ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) )  =  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) | 
						
							| 56 | 55 | ply1term | ⊢ ( ( ℂ  ⊆  ℂ  ∧  ( 𝐴 ‘ 𝑀 )  ∈  ℂ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 57 | 54 21 20 56 | syl3anc | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 58 | 57 44 46 48 | plyco | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) )  ∘  𝐺 )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 59 | 53 58 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 60 |  | plysubcl | ⊢ ( ( ( 𝐹  ∘  𝐺 )  ∈  ( Poly ‘ ℂ )  ∧  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  ∈  ( Poly ‘ ℂ ) )  →  ( ( 𝐹  ∘  𝐺 )  ∘f   −  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 61 | 49 59 60 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐺 )  ∘f   −  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 62 | 41 61 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 64 | 59 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 65 |  | nn0p1nn | ⊢ ( 𝐷  ∈  ℕ0  →  ( 𝐷  +  1 )  ∈  ℕ ) | 
						
							| 66 | 6 65 | syl | ⊢ ( 𝜑  →  ( 𝐷  +  1 )  ∈  ℕ ) | 
						
							| 67 | 7 66 | eqeltrd | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 68 | 67 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑀 ) | 
						
							| 69 |  | fveq2 | ⊢ ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  =  0𝑝  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  =  ( deg ‘ 0𝑝 ) ) | 
						
							| 70 |  | dgr0 | ⊢ ( deg ‘ 0𝑝 )  =  0 | 
						
							| 71 | 69 70 | eqtrdi | ⊢ ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  =  0𝑝  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  =  0 ) | 
						
							| 72 | 71 | breq1d | ⊢ ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  =  0𝑝  →  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  <  𝑀  ↔  0  <  𝑀 ) ) | 
						
							| 73 | 68 72 | syl5ibrcom | ⊢ ( 𝜑  →  ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  =  0𝑝  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  <  𝑀 ) ) | 
						
							| 74 |  | idd | ⊢ ( 𝜑  →  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  <  𝑀  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  <  𝑀 ) ) | 
						
							| 75 |  | eqid | ⊢ ( deg ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  =  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) | 
						
							| 76 | 1 75 | dgrsub | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℂ )  ∧  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) )  ∈  ( Poly ‘ ℂ ) )  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ≤  if ( 𝑀  ≤  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ,  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ,  𝑀 ) ) | 
						
							| 77 | 43 57 76 | syl2anc | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ≤  if ( 𝑀  ≤  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ,  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ,  𝑀 ) ) | 
						
							| 78 | 67 | nnne0d | ⊢ ( 𝜑  →  𝑀  ≠  0 ) | 
						
							| 79 | 1 5 | dgreq0 | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( 𝐹  =  0𝑝  ↔  ( 𝐴 ‘ 𝑀 )  =  0 ) ) | 
						
							| 80 | 3 79 | syl | ⊢ ( 𝜑  →  ( 𝐹  =  0𝑝  ↔  ( 𝐴 ‘ 𝑀 )  =  0 ) ) | 
						
							| 81 |  | fveq2 | ⊢ ( 𝐹  =  0𝑝  →  ( deg ‘ 𝐹 )  =  ( deg ‘ 0𝑝 ) ) | 
						
							| 82 | 81 70 | eqtrdi | ⊢ ( 𝐹  =  0𝑝  →  ( deg ‘ 𝐹 )  =  0 ) | 
						
							| 83 | 1 82 | eqtrid | ⊢ ( 𝐹  =  0𝑝  →  𝑀  =  0 ) | 
						
							| 84 | 80 83 | biimtrrdi | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑀 )  =  0  →  𝑀  =  0 ) ) | 
						
							| 85 | 84 | necon3d | ⊢ ( 𝜑  →  ( 𝑀  ≠  0  →  ( 𝐴 ‘ 𝑀 )  ≠  0 ) ) | 
						
							| 86 | 78 85 | mpd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑀 )  ≠  0 ) | 
						
							| 87 | 55 | dgr1term | ⊢ ( ( ( 𝐴 ‘ 𝑀 )  ∈  ℂ  ∧  ( 𝐴 ‘ 𝑀 )  ≠  0  ∧  𝑀  ∈  ℕ0 )  →  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  =  𝑀 ) | 
						
							| 88 | 21 86 20 87 | syl3anc | ⊢ ( 𝜑  →  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  =  𝑀 ) | 
						
							| 89 | 88 | ifeq1d | ⊢ ( 𝜑  →  if ( 𝑀  ≤  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ,  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ,  𝑀 )  =  if ( 𝑀  ≤  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ,  𝑀 ,  𝑀 ) ) | 
						
							| 90 |  | ifid | ⊢ if ( 𝑀  ≤  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ,  𝑀 ,  𝑀 )  =  𝑀 | 
						
							| 91 | 89 90 | eqtrdi | ⊢ ( 𝜑  →  if ( 𝑀  ≤  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ,  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ,  𝑀 )  =  𝑀 ) | 
						
							| 92 | 77 91 | breqtrd | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ≤  𝑀 ) | 
						
							| 93 |  | eqid | ⊢ ( coeff ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  =  ( coeff ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) | 
						
							| 94 | 5 93 | coesub | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℂ )  ∧  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) )  ∈  ( Poly ‘ ℂ ) )  →  ( coeff ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  =  ( 𝐴  ∘f   −  ( coeff ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ) ) | 
						
							| 95 | 43 57 94 | syl2anc | ⊢ ( 𝜑  →  ( coeff ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  =  ( 𝐴  ∘f   −  ( coeff ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ) ) | 
						
							| 96 | 95 | fveq1d | ⊢ ( 𝜑  →  ( ( coeff ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ) ‘ 𝑀 )  =  ( ( 𝐴  ∘f   −  ( coeff ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ) ‘ 𝑀 ) ) | 
						
							| 97 | 17 | ffnd | ⊢ ( 𝜑  →  𝐴  Fn  ℕ0 ) | 
						
							| 98 | 93 | coef3 | ⊢ ( ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) )  ∈  ( Poly ‘ ℂ )  →  ( coeff ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) : ℕ0 ⟶ ℂ ) | 
						
							| 99 | 57 98 | syl | ⊢ ( 𝜑  →  ( coeff ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) : ℕ0 ⟶ ℂ ) | 
						
							| 100 | 99 | ffnd | ⊢ ( 𝜑  →  ( coeff ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  Fn  ℕ0 ) | 
						
							| 101 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 102 | 101 | a1i | ⊢ ( 𝜑  →  ℕ0  ∈  V ) | 
						
							| 103 |  | inidm | ⊢ ( ℕ0  ∩  ℕ0 )  =  ℕ0 | 
						
							| 104 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑀 )  =  ( 𝐴 ‘ 𝑀 ) ) | 
						
							| 105 | 55 | coe1term | ⊢ ( ( ( 𝐴 ‘ 𝑀 )  ∈  ℂ  ∧  𝑀  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( coeff ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ‘ 𝑀 )  =  if ( 𝑀  =  𝑀 ,  ( 𝐴 ‘ 𝑀 ) ,  0 ) ) | 
						
							| 106 | 21 20 20 105 | syl3anc | ⊢ ( 𝜑  →  ( ( coeff ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ‘ 𝑀 )  =  if ( 𝑀  =  𝑀 ,  ( 𝐴 ‘ 𝑀 ) ,  0 ) ) | 
						
							| 107 |  | eqid | ⊢ 𝑀  =  𝑀 | 
						
							| 108 | 107 | iftruei | ⊢ if ( 𝑀  =  𝑀 ,  ( 𝐴 ‘ 𝑀 ) ,  0 )  =  ( 𝐴 ‘ 𝑀 ) | 
						
							| 109 | 106 108 | eqtrdi | ⊢ ( 𝜑  →  ( ( coeff ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ‘ 𝑀 )  =  ( 𝐴 ‘ 𝑀 ) ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ0 )  →  ( ( coeff ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ‘ 𝑀 )  =  ( 𝐴 ‘ 𝑀 ) ) | 
						
							| 111 | 97 100 102 102 103 104 110 | ofval | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝐴  ∘f   −  ( coeff ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ) ‘ 𝑀 )  =  ( ( 𝐴 ‘ 𝑀 )  −  ( 𝐴 ‘ 𝑀 ) ) ) | 
						
							| 112 | 20 111 | mpdan | ⊢ ( 𝜑  →  ( ( 𝐴  ∘f   −  ( coeff ‘ ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ) ‘ 𝑀 )  =  ( ( 𝐴 ‘ 𝑀 )  −  ( 𝐴 ‘ 𝑀 ) ) ) | 
						
							| 113 | 21 | subidd | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑀 )  −  ( 𝐴 ‘ 𝑀 ) )  =  0 ) | 
						
							| 114 | 96 112 113 | 3eqtrd | ⊢ ( 𝜑  →  ( ( coeff ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ) ‘ 𝑀 )  =  0 ) | 
						
							| 115 |  | plysubcl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℂ )  ∧  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) )  ∈  ( Poly ‘ ℂ ) )  →  ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 116 | 43 57 115 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 117 |  | eqid | ⊢ ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  =  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ) | 
						
							| 118 |  | eqid | ⊢ ( coeff ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  =  ( coeff ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ) | 
						
							| 119 | 117 118 | dgrlt | ⊢ ( ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  ∈  ( Poly ‘ ℂ )  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  =  0𝑝  ∨  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  <  𝑀 )  ↔  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ≤  𝑀  ∧  ( ( coeff ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ) ‘ 𝑀 )  =  0 ) ) ) | 
						
							| 120 | 116 20 119 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  =  0𝑝  ∨  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  <  𝑀 )  ↔  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ≤  𝑀  ∧  ( ( coeff ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ) ‘ 𝑀 )  =  0 ) ) ) | 
						
							| 121 | 92 114 120 | mpbir2and | ⊢ ( 𝜑  →  ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  =  0𝑝  ∨  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  <  𝑀 ) ) | 
						
							| 122 | 73 74 121 | mpjaod | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  <  𝑀 ) | 
						
							| 123 | 122 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  <  𝑀 ) | 
						
							| 124 |  | dgrcl | ⊢ ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  ∈  ( Poly ‘ ℂ )  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ∈  ℕ0 ) | 
						
							| 125 | 116 124 | syl | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ∈  ℕ0 ) | 
						
							| 126 | 125 | nn0red | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ∈  ℝ ) | 
						
							| 127 | 126 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ∈  ℝ ) | 
						
							| 128 | 20 | nn0red | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  𝑀  ∈  ℝ ) | 
						
							| 130 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 131 | 130 | adantl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℝ ) | 
						
							| 132 |  | nngt0 | ⊢ ( 𝑁  ∈  ℕ  →  0  <  𝑁 ) | 
						
							| 133 | 132 | adantl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  0  <  𝑁 ) | 
						
							| 134 |  | ltmul1 | ⊢ ( ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 ) )  →  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  <  𝑀  ↔  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ·  𝑁 )  <  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 135 | 127 129 131 133 134 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  <  𝑀  ↔  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ·  𝑁 )  <  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 136 | 123 135 | mpbid | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ·  𝑁 )  <  ( 𝑀  ·  𝑁 ) ) | 
						
							| 137 | 13 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℂ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 138 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℂ )  →  ( 𝐴 ‘ 𝑀 )  ∈  ℂ ) | 
						
							| 139 |  | id | ⊢ ( 𝑦  ∈  ℂ  →  𝑦  ∈  ℂ ) | 
						
							| 140 |  | expcl | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑦 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 141 | 139 20 140 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℂ )  →  ( 𝑦 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 142 | 138 141 | mulcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℂ )  →  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) )  ∈  ℂ ) | 
						
							| 143 | 29 137 142 35 50 | offval2 | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  =  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐹 ‘ 𝑦 )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ) | 
						
							| 144 | 36 52 | oveq12d | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑥 )  →  ( ( 𝐹 ‘ 𝑦 )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) | 
						
							| 145 | 11 34 143 144 | fmptco | ⊢ ( 𝜑  →  ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  ∘  𝐺 )  =  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) | 
						
							| 146 | 145 | fveq2d | ⊢ ( 𝜑  →  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  ∘  𝐺 ) )  =  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) ) | 
						
							| 147 | 122 7 | breqtrd | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  <  ( 𝐷  +  1 ) ) | 
						
							| 148 |  | nn0leltp1 | ⊢ ( ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ∈  ℕ0  ∧  𝐷  ∈  ℕ0 )  →  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ≤  𝐷  ↔  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  <  ( 𝐷  +  1 ) ) ) | 
						
							| 149 | 125 6 148 | syl2anc | ⊢ ( 𝜑  →  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ≤  𝐷  ↔  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  <  ( 𝐷  +  1 ) ) ) | 
						
							| 150 | 147 149 | mpbird | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ≤  𝐷 ) | 
						
							| 151 |  | fveq2 | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  →  ( deg ‘ 𝑓 )  =  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) ) ) | 
						
							| 152 | 151 | breq1d | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  →  ( ( deg ‘ 𝑓 )  ≤  𝐷  ↔  ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ≤  𝐷 ) ) | 
						
							| 153 |  | coeq1 | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  →  ( 𝑓  ∘  𝐺 )  =  ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  ∘  𝐺 ) ) | 
						
							| 154 | 153 | fveq2d | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  ∘  𝐺 ) ) ) | 
						
							| 155 | 151 | oveq1d | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  →  ( ( deg ‘ 𝑓 )  ·  𝑁 )  =  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ·  𝑁 ) ) | 
						
							| 156 | 154 155 | eqeq12d | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  →  ( ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 )  ↔  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  ∘  𝐺 ) )  =  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ·  𝑁 ) ) ) | 
						
							| 157 | 152 156 | imbi12d | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  →  ( ( ( deg ‘ 𝑓 )  ≤  𝐷  →  ( deg ‘ ( 𝑓  ∘  𝐺 ) )  =  ( ( deg ‘ 𝑓 )  ·  𝑁 ) )  ↔  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ≤  𝐷  →  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  ∘  𝐺 ) )  =  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ·  𝑁 ) ) ) ) | 
						
							| 158 | 157 8 116 | rspcdva | ⊢ ( 𝜑  →  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ≤  𝐷  →  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  ∘  𝐺 ) )  =  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ·  𝑁 ) ) ) | 
						
							| 159 | 150 158 | mpd | ⊢ ( 𝜑  →  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) )  ∘  𝐺 ) )  =  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ·  𝑁 ) ) | 
						
							| 160 | 146 159 | eqtr3d | ⊢ ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) )  =  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ·  𝑁 ) ) | 
						
							| 161 | 160 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) )  =  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( 𝑦 ↑ 𝑀 ) ) ) ) )  ·  𝑁 ) ) | 
						
							| 162 |  | fconstmpt | ⊢ ( ℂ  ×  { ( 𝐴 ‘ 𝑀 ) } )  =  ( 𝑥  ∈  ℂ  ↦  ( 𝐴 ‘ 𝑀 ) ) | 
						
							| 163 | 162 | a1i | ⊢ ( 𝜑  →  ( ℂ  ×  { ( 𝐴 ‘ 𝑀 ) } )  =  ( 𝑥  ∈  ℂ  ↦  ( 𝐴 ‘ 𝑀 ) ) ) | 
						
							| 164 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) )  =  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) | 
						
							| 165 | 29 22 24 163 164 | offval2 | ⊢ ( 𝜑  →  ( ( ℂ  ×  { ( 𝐴 ‘ 𝑀 ) } )  ∘f   ·  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) | 
						
							| 166 | 165 | fveq2d | ⊢ ( 𝜑  →  ( deg ‘ ( ( ℂ  ×  { ( 𝐴 ‘ 𝑀 ) } )  ∘f   ·  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  =  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) | 
						
							| 167 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑀 ) )  =  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑀 ) ) ) | 
						
							| 168 | 11 34 167 51 | fmptco | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑀 ) )  ∘  𝐺 )  =  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) | 
						
							| 169 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 170 |  | plypow | ⊢ ( ( ℂ  ⊆  ℂ  ∧  1  ∈  ℂ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑀 ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 171 | 54 169 20 170 | syl3anc | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑀 ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 172 | 171 44 46 48 | plyco | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑀 ) )  ∘  𝐺 )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 173 | 168 172 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 174 |  | dgrmulc | ⊢ ( ( ( 𝐴 ‘ 𝑀 )  ∈  ℂ  ∧  ( 𝐴 ‘ 𝑀 )  ≠  0  ∧  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) )  ∈  ( Poly ‘ ℂ ) )  →  ( deg ‘ ( ( ℂ  ×  { ( 𝐴 ‘ 𝑀 ) } )  ∘f   ·  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  =  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) | 
						
							| 175 | 21 86 173 174 | syl3anc | ⊢ ( 𝜑  →  ( deg ‘ ( ( ℂ  ×  { ( 𝐴 ‘ 𝑀 ) } )  ∘f   ·  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  =  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) | 
						
							| 176 | 166 175 | eqtr3d | ⊢ ( 𝜑  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  =  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) | 
						
							| 177 | 176 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  =  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) | 
						
							| 178 | 67 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  𝑀  ∈  ℕ ) | 
						
							| 179 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ ) | 
						
							| 180 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 181 | 2 178 179 180 | dgrcolem1 | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  =  ( 𝑀  ·  𝑁 ) ) | 
						
							| 182 | 177 181 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  =  ( 𝑀  ·  𝑁 ) ) | 
						
							| 183 | 136 161 182 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) )  <  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) | 
						
							| 184 |  | eqid | ⊢ ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) )  =  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) | 
						
							| 185 |  | eqid | ⊢ ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  =  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) | 
						
							| 186 | 184 185 | dgradd2 | ⊢ ( ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  ∈  ( Poly ‘ ℂ )  ∧  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) )  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) )  <  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) )  →  ( deg ‘ ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  ∘f   +  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) )  =  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) | 
						
							| 187 | 63 64 183 186 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( deg ‘ ( ( 𝑥  ∈  ℂ  ↦  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  −  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) )  ∘f   +  ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) )  =  ( deg ‘ ( 𝑥  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑀 )  ·  ( ( 𝐺 ‘ 𝑥 ) ↑ 𝑀 ) ) ) ) ) | 
						
							| 188 | 40 187 182 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( deg ‘ ( 𝐹  ∘  𝐺 ) )  =  ( 𝑀  ·  𝑁 ) ) | 
						
							| 189 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 190 |  | ffvelcdm | ⊢ ( ( 𝐺 : ℂ ⟶ ℂ  ∧  0  ∈  ℂ )  →  ( 𝐺 ‘ 0 )  ∈  ℂ ) | 
						
							| 191 | 10 189 190 | sylancl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 0 )  ∈  ℂ ) | 
						
							| 192 | 13 191 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐺 ‘ 0 ) )  ∈  ℂ ) | 
						
							| 193 |  | 0dgr | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 0 ) )  ∈  ℂ  →  ( deg ‘ ( ℂ  ×  { ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) } ) )  =  0 ) | 
						
							| 194 | 192 193 | syl | ⊢ ( 𝜑  →  ( deg ‘ ( ℂ  ×  { ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) } ) )  =  0 ) | 
						
							| 195 | 20 | nn0cnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 196 | 195 | mul01d | ⊢ ( 𝜑  →  ( 𝑀  ·  0 )  =  0 ) | 
						
							| 197 | 194 196 | eqtr4d | ⊢ ( 𝜑  →  ( deg ‘ ( ℂ  ×  { ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) } ) )  =  ( 𝑀  ·  0 ) ) | 
						
							| 198 | 197 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  ( deg ‘ ( ℂ  ×  { ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) } ) )  =  ( 𝑀  ·  0 ) ) | 
						
							| 199 | 191 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑁  =  0 )  ∧  𝑥  ∈  ℂ )  →  ( 𝐺 ‘ 0 )  ∈  ℂ ) | 
						
							| 200 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  𝑁  =  0 ) | 
						
							| 201 | 2 200 | eqtr3id | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  ( deg ‘ 𝐺 )  =  0 ) | 
						
							| 202 |  | 0dgrb | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  ( ( deg ‘ 𝐺 )  =  0  ↔  𝐺  =  ( ℂ  ×  { ( 𝐺 ‘ 0 ) } ) ) ) | 
						
							| 203 | 4 202 | syl | ⊢ ( 𝜑  →  ( ( deg ‘ 𝐺 )  =  0  ↔  𝐺  =  ( ℂ  ×  { ( 𝐺 ‘ 0 ) } ) ) ) | 
						
							| 204 | 203 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  ( ( deg ‘ 𝐺 )  =  0  ↔  𝐺  =  ( ℂ  ×  { ( 𝐺 ‘ 0 ) } ) ) ) | 
						
							| 205 | 201 204 | mpbid | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  𝐺  =  ( ℂ  ×  { ( 𝐺 ‘ 0 ) } ) ) | 
						
							| 206 |  | fconstmpt | ⊢ ( ℂ  ×  { ( 𝐺 ‘ 0 ) } )  =  ( 𝑥  ∈  ℂ  ↦  ( 𝐺 ‘ 0 ) ) | 
						
							| 207 | 205 206 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  𝐺  =  ( 𝑥  ∈  ℂ  ↦  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 208 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  𝐹  =  ( 𝑦  ∈  ℂ  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 209 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝐺 ‘ 0 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) ) | 
						
							| 210 | 199 207 208 209 | fmptco | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  ( 𝐹  ∘  𝐺 )  =  ( 𝑥  ∈  ℂ  ↦  ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) ) ) | 
						
							| 211 |  | fconstmpt | ⊢ ( ℂ  ×  { ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) } )  =  ( 𝑥  ∈  ℂ  ↦  ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) ) | 
						
							| 212 | 210 211 | eqtr4di | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  ( 𝐹  ∘  𝐺 )  =  ( ℂ  ×  { ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) } ) ) | 
						
							| 213 | 212 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  ( deg ‘ ( 𝐹  ∘  𝐺 ) )  =  ( deg ‘ ( ℂ  ×  { ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) } ) ) ) | 
						
							| 214 | 200 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  ( 𝑀  ·  𝑁 )  =  ( 𝑀  ·  0 ) ) | 
						
							| 215 | 198 213 214 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  ( deg ‘ ( 𝐹  ∘  𝐺 ) )  =  ( 𝑀  ·  𝑁 ) ) | 
						
							| 216 |  | dgrcl | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ 𝐺 )  ∈  ℕ0 ) | 
						
							| 217 | 4 216 | syl | ⊢ ( 𝜑  →  ( deg ‘ 𝐺 )  ∈  ℕ0 ) | 
						
							| 218 | 2 217 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 219 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 220 | 218 219 | sylib | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 221 | 188 215 220 | mpjaodan | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐹  ∘  𝐺 ) )  =  ( 𝑀  ·  𝑁 ) ) |