Step |
Hyp |
Ref |
Expression |
1 |
|
dgreq0.1 |
⊢ 𝑁 = ( deg ‘ 𝐹 ) |
2 |
|
dgreq0.2 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
3 |
|
fveq2 |
⊢ ( 𝐹 = 0𝑝 → ( coeff ‘ 𝐹 ) = ( coeff ‘ 0𝑝 ) ) |
4 |
2 3
|
eqtrid |
⊢ ( 𝐹 = 0𝑝 → 𝐴 = ( coeff ‘ 0𝑝 ) ) |
5 |
|
coe0 |
⊢ ( coeff ‘ 0𝑝 ) = ( ℕ0 × { 0 } ) |
6 |
4 5
|
eqtrdi |
⊢ ( 𝐹 = 0𝑝 → 𝐴 = ( ℕ0 × { 0 } ) ) |
7 |
|
fveq2 |
⊢ ( 𝐹 = 0𝑝 → ( deg ‘ 𝐹 ) = ( deg ‘ 0𝑝 ) ) |
8 |
1 7
|
eqtrid |
⊢ ( 𝐹 = 0𝑝 → 𝑁 = ( deg ‘ 0𝑝 ) ) |
9 |
|
dgr0 |
⊢ ( deg ‘ 0𝑝 ) = 0 |
10 |
8 9
|
eqtrdi |
⊢ ( 𝐹 = 0𝑝 → 𝑁 = 0 ) |
11 |
6 10
|
fveq12d |
⊢ ( 𝐹 = 0𝑝 → ( 𝐴 ‘ 𝑁 ) = ( ( ℕ0 × { 0 } ) ‘ 0 ) ) |
12 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
13 |
|
fvconst2g |
⊢ ( ( 0 ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → ( ( ℕ0 × { 0 } ) ‘ 0 ) = 0 ) |
14 |
12 12 13
|
mp2an |
⊢ ( ( ℕ0 × { 0 } ) ‘ 0 ) = 0 |
15 |
11 14
|
eqtrdi |
⊢ ( 𝐹 = 0𝑝 → ( 𝐴 ‘ 𝑁 ) = 0 ) |
16 |
2
|
coefv0 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐹 ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → ( 𝐹 ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
18 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
19 |
18
|
nnred |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
20 |
19
|
ltm1d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 − 1 ) < 𝑁 ) |
21 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
23 |
|
peano2rem |
⊢ ( 𝑁 ∈ ℝ → ( 𝑁 − 1 ) ∈ ℝ ) |
24 |
22 23
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 − 1 ) ∈ ℝ ) |
25 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ 𝑁 ∈ ℕ ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
26 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
28 |
2 1
|
dgrub |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ≤ 𝑁 ) |
29 |
28
|
3expia |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
30 |
29
|
ad2ant2rl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
31 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ) → ( 𝐴 ‘ 𝑁 ) = 0 ) |
32 |
|
fveqeq2 |
⊢ ( 𝑁 = 𝑘 → ( ( 𝐴 ‘ 𝑁 ) = 0 ↔ ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
33 |
31 32
|
syl5ibcom |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ) → ( 𝑁 = 𝑘 → ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
34 |
33
|
necon3d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑁 ≠ 𝑘 ) ) |
35 |
30 34
|
jcad |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → ( 𝑘 ≤ 𝑁 ∧ 𝑁 ≠ 𝑘 ) ) ) |
36 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
37 |
36
|
ad2antll |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ) → 𝑘 ∈ ℝ ) |
38 |
21
|
ad2antrl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ) → 𝑁 ∈ ℝ ) |
39 |
37 38
|
ltlend |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ) → ( 𝑘 < 𝑁 ↔ ( 𝑘 ≤ 𝑁 ∧ 𝑁 ≠ 𝑘 ) ) ) |
40 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
41 |
40
|
ad2antll |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ) → 𝑘 ∈ ℤ ) |
42 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
43 |
42
|
ad2antrl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ) → 𝑁 ∈ ℤ ) |
44 |
|
zltlem1 |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑘 < 𝑁 ↔ 𝑘 ≤ ( 𝑁 − 1 ) ) ) |
45 |
41 43 44
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ) → ( 𝑘 < 𝑁 ↔ 𝑘 ≤ ( 𝑁 − 1 ) ) ) |
46 |
39 45
|
bitr3d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ) → ( ( 𝑘 ≤ 𝑁 ∧ 𝑁 ≠ 𝑘 ) ↔ 𝑘 ≤ ( 𝑁 − 1 ) ) ) |
47 |
35 46
|
sylibd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( 𝑁 − 1 ) ) ) |
48 |
47
|
expr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( 𝑁 − 1 ) ) ) ) |
49 |
48
|
ralrimiv |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ 𝑁 ∈ ℕ ) → ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( 𝑁 − 1 ) ) ) |
50 |
2
|
coef3 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
51 |
50
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ 𝑁 ∈ ℕ ) → 𝐴 : ℕ0 ⟶ ℂ ) |
52 |
|
plyco0 |
⊢ ( ( ( 𝑁 − 1 ) ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( 𝑁 − 1 ) ) ) ) |
53 |
27 51 52
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( 𝑁 − 1 ) ) ) ) |
54 |
49 53
|
mpbird |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ 𝑁 ∈ ℕ ) → ( 𝐴 “ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) = { 0 } ) |
55 |
2 1
|
dgrlb |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) = { 0 } ) → 𝑁 ≤ ( 𝑁 − 1 ) ) |
56 |
25 27 54 55
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ≤ ( 𝑁 − 1 ) ) |
57 |
22 24 56
|
lensymd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) ∧ 𝑁 ∈ ℕ ) → ¬ ( 𝑁 − 1 ) < 𝑁 ) |
58 |
20 57
|
pm2.65da |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → ¬ 𝑁 ∈ ℕ ) |
59 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
60 |
1 59
|
eqeltrid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑁 ∈ ℕ0 ) |
61 |
60
|
adantr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → 𝑁 ∈ ℕ0 ) |
62 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
63 |
61 62
|
sylib |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
64 |
63
|
ord |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → ( ¬ 𝑁 ∈ ℕ → 𝑁 = 0 ) ) |
65 |
58 64
|
mpd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → 𝑁 = 0 ) |
66 |
65
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → ( 𝐴 ‘ 𝑁 ) = ( 𝐴 ‘ 0 ) ) |
67 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → ( 𝐴 ‘ 𝑁 ) = 0 ) |
68 |
17 66 67
|
3eqtr2d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → ( 𝐹 ‘ 0 ) = 0 ) |
69 |
68
|
sneqd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → { ( 𝐹 ‘ 0 ) } = { 0 } ) |
70 |
69
|
xpeq2d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → ( ℂ × { ( 𝐹 ‘ 0 ) } ) = ( ℂ × { 0 } ) ) |
71 |
1 65
|
eqtr3id |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → ( deg ‘ 𝐹 ) = 0 ) |
72 |
|
0dgrb |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ( deg ‘ 𝐹 ) = 0 ↔ 𝐹 = ( ℂ × { ( 𝐹 ‘ 0 ) } ) ) ) |
73 |
72
|
adantr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → ( ( deg ‘ 𝐹 ) = 0 ↔ 𝐹 = ( ℂ × { ( 𝐹 ‘ 0 ) } ) ) ) |
74 |
71 73
|
mpbid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → 𝐹 = ( ℂ × { ( 𝐹 ‘ 0 ) } ) ) |
75 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
76 |
75
|
a1i |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → 0𝑝 = ( ℂ × { 0 } ) ) |
77 |
70 74 76
|
3eqtr4d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝐴 ‘ 𝑁 ) = 0 ) → 𝐹 = 0𝑝 ) |
78 |
77
|
ex |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ( 𝐴 ‘ 𝑁 ) = 0 → 𝐹 = 0𝑝 ) ) |
79 |
15 78
|
impbid2 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐹 = 0𝑝 ↔ ( 𝐴 ‘ 𝑁 ) = 0 ) ) |