Metamath Proof Explorer


Theorem dgrid

Description: The degree of the identity function. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Assertion dgrid ( deg ‘ Xp ) = 1

Proof

Step Hyp Ref Expression
1 ax-1cn 1 ∈ ℂ
2 ax-1ne0 1 ≠ 0
3 1nn0 1 ∈ ℕ0
4 mptresid ( I ↾ ℂ ) = ( 𝑧 ∈ ℂ ↦ 𝑧 )
5 df-idp Xp = ( I ↾ ℂ )
6 exp1 ( 𝑧 ∈ ℂ → ( 𝑧 ↑ 1 ) = 𝑧 )
7 6 oveq2d ( 𝑧 ∈ ℂ → ( 1 · ( 𝑧 ↑ 1 ) ) = ( 1 · 𝑧 ) )
8 mulid2 ( 𝑧 ∈ ℂ → ( 1 · 𝑧 ) = 𝑧 )
9 7 8 eqtrd ( 𝑧 ∈ ℂ → ( 1 · ( 𝑧 ↑ 1 ) ) = 𝑧 )
10 9 mpteq2ia ( 𝑧 ∈ ℂ ↦ ( 1 · ( 𝑧 ↑ 1 ) ) ) = ( 𝑧 ∈ ℂ ↦ 𝑧 )
11 4 5 10 3eqtr4i Xp = ( 𝑧 ∈ ℂ ↦ ( 1 · ( 𝑧 ↑ 1 ) ) )
12 11 dgr1term ( ( 1 ∈ ℂ ∧ 1 ≠ 0 ∧ 1 ∈ ℕ0 ) → ( deg ‘ Xp ) = 1 )
13 1 2 3 12 mp3an ( deg ‘ Xp ) = 1