Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
2 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
3 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
4 |
|
mptresid |
⊢ ( I ↾ ℂ ) = ( 𝑧 ∈ ℂ ↦ 𝑧 ) |
5 |
|
df-idp |
⊢ Xp = ( I ↾ ℂ ) |
6 |
|
exp1 |
⊢ ( 𝑧 ∈ ℂ → ( 𝑧 ↑ 1 ) = 𝑧 ) |
7 |
6
|
oveq2d |
⊢ ( 𝑧 ∈ ℂ → ( 1 · ( 𝑧 ↑ 1 ) ) = ( 1 · 𝑧 ) ) |
8 |
|
mulid2 |
⊢ ( 𝑧 ∈ ℂ → ( 1 · 𝑧 ) = 𝑧 ) |
9 |
7 8
|
eqtrd |
⊢ ( 𝑧 ∈ ℂ → ( 1 · ( 𝑧 ↑ 1 ) ) = 𝑧 ) |
10 |
9
|
mpteq2ia |
⊢ ( 𝑧 ∈ ℂ ↦ ( 1 · ( 𝑧 ↑ 1 ) ) ) = ( 𝑧 ∈ ℂ ↦ 𝑧 ) |
11 |
4 5 10
|
3eqtr4i |
⊢ Xp = ( 𝑧 ∈ ℂ ↦ ( 1 · ( 𝑧 ↑ 1 ) ) ) |
12 |
11
|
dgr1term |
⊢ ( ( 1 ∈ ℂ ∧ 1 ≠ 0 ∧ 1 ∈ ℕ0 ) → ( deg ‘ Xp ) = 1 ) |
13 |
1 2 3 12
|
mp3an |
⊢ ( deg ‘ Xp ) = 1 |