Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝐹 = 0𝑝 → ( ( ℂ × { 𝐴 } ) ∘f · 𝐹 ) = ( ( ℂ × { 𝐴 } ) ∘f · 0𝑝 ) ) |
2 |
1
|
fveq2d |
⊢ ( 𝐹 = 0𝑝 → ( deg ‘ ( ( ℂ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( deg ‘ ( ( ℂ × { 𝐴 } ) ∘f · 0𝑝 ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝐹 = 0𝑝 → ( deg ‘ 𝐹 ) = ( deg ‘ 0𝑝 ) ) |
4 |
|
dgr0 |
⊢ ( deg ‘ 0𝑝 ) = 0 |
5 |
3 4
|
eqtrdi |
⊢ ( 𝐹 = 0𝑝 → ( deg ‘ 𝐹 ) = 0 ) |
6 |
2 5
|
eqeq12d |
⊢ ( 𝐹 = 0𝑝 → ( ( deg ‘ ( ( ℂ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( deg ‘ 𝐹 ) ↔ ( deg ‘ ( ( ℂ × { 𝐴 } ) ∘f · 0𝑝 ) ) = 0 ) ) |
7 |
|
ssid |
⊢ ℂ ⊆ ℂ |
8 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → 𝐴 ∈ ℂ ) |
9 |
|
plyconst |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ ) → ( ℂ × { 𝐴 } ) ∈ ( Poly ‘ ℂ ) ) |
10 |
7 8 9
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → ( ℂ × { 𝐴 } ) ∈ ( Poly ‘ ℂ ) ) |
11 |
|
0cn |
⊢ 0 ∈ ℂ |
12 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( ℂ × { 𝐴 } ) ‘ 0 ) = 𝐴 ) |
13 |
8 11 12
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → ( ( ℂ × { 𝐴 } ) ‘ 0 ) = 𝐴 ) |
14 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → 𝐴 ≠ 0 ) |
15 |
13 14
|
eqnetrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → ( ( ℂ × { 𝐴 } ) ‘ 0 ) ≠ 0 ) |
16 |
|
ne0p |
⊢ ( ( 0 ∈ ℂ ∧ ( ( ℂ × { 𝐴 } ) ‘ 0 ) ≠ 0 ) → ( ℂ × { 𝐴 } ) ≠ 0𝑝 ) |
17 |
11 15 16
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → ( ℂ × { 𝐴 } ) ≠ 0𝑝 ) |
18 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
19 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
20 |
18 19
|
sselid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
21 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → 𝐹 ≠ 0𝑝 ) |
22 |
|
eqid |
⊢ ( deg ‘ ( ℂ × { 𝐴 } ) ) = ( deg ‘ ( ℂ × { 𝐴 } ) ) |
23 |
|
eqid |
⊢ ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 ) |
24 |
22 23
|
dgrmul |
⊢ ( ( ( ( ℂ × { 𝐴 } ) ∈ ( Poly ‘ ℂ ) ∧ ( ℂ × { 𝐴 } ) ≠ 0𝑝 ) ∧ ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ 𝐹 ≠ 0𝑝 ) ) → ( deg ‘ ( ( ℂ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( ( deg ‘ ( ℂ × { 𝐴 } ) ) + ( deg ‘ 𝐹 ) ) ) |
25 |
10 17 20 21 24
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → ( deg ‘ ( ( ℂ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( ( deg ‘ ( ℂ × { 𝐴 } ) ) + ( deg ‘ 𝐹 ) ) ) |
26 |
|
0dgr |
⊢ ( 𝐴 ∈ ℂ → ( deg ‘ ( ℂ × { 𝐴 } ) ) = 0 ) |
27 |
8 26
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → ( deg ‘ ( ℂ × { 𝐴 } ) ) = 0 ) |
28 |
27
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → ( ( deg ‘ ( ℂ × { 𝐴 } ) ) + ( deg ‘ 𝐹 ) ) = ( 0 + ( deg ‘ 𝐹 ) ) ) |
29 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
30 |
19 29
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
31 |
30
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → ( deg ‘ 𝐹 ) ∈ ℂ ) |
32 |
31
|
addid2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → ( 0 + ( deg ‘ 𝐹 ) ) = ( deg ‘ 𝐹 ) ) |
33 |
25 28 32
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝐹 ≠ 0𝑝 ) → ( deg ‘ ( ( ℂ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( deg ‘ 𝐹 ) ) |
34 |
|
cnex |
⊢ ℂ ∈ V |
35 |
34
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) → ℂ ∈ V ) |
36 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) → 𝐴 ∈ ℂ ) |
37 |
11
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) → 0 ∈ ℂ ) |
38 |
35 36 37
|
ofc12 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) → ( ( ℂ × { 𝐴 } ) ∘f · ( ℂ × { 0 } ) ) = ( ℂ × { ( 𝐴 · 0 ) } ) ) |
39 |
36
|
mul01d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) → ( 𝐴 · 0 ) = 0 ) |
40 |
39
|
sneqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) → { ( 𝐴 · 0 ) } = { 0 } ) |
41 |
40
|
xpeq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) → ( ℂ × { ( 𝐴 · 0 ) } ) = ( ℂ × { 0 } ) ) |
42 |
38 41
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) → ( ( ℂ × { 𝐴 } ) ∘f · ( ℂ × { 0 } ) ) = ( ℂ × { 0 } ) ) |
43 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
44 |
43
|
oveq2i |
⊢ ( ( ℂ × { 𝐴 } ) ∘f · 0𝑝 ) = ( ( ℂ × { 𝐴 } ) ∘f · ( ℂ × { 0 } ) ) |
45 |
42 44 43
|
3eqtr4g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) → ( ( ℂ × { 𝐴 } ) ∘f · 0𝑝 ) = 0𝑝 ) |
46 |
45
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) → ( deg ‘ ( ( ℂ × { 𝐴 } ) ∘f · 0𝑝 ) ) = ( deg ‘ 0𝑝 ) ) |
47 |
46 4
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) → ( deg ‘ ( ( ℂ × { 𝐴 } ) ∘f · 0𝑝 ) ) = 0 ) |
48 |
6 33 47
|
pm2.61ne |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ ( Poly ‘ 𝑆 ) ) → ( deg ‘ ( ( ℂ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( deg ‘ 𝐹 ) ) |