| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dgrsub.1 | ⊢ 𝑀  =  ( deg ‘ 𝐹 ) | 
						
							| 2 |  | dgrsub.2 | ⊢ 𝑁  =  ( deg ‘ 𝐺 ) | 
						
							| 3 |  | plyssc | ⊢ ( Poly ‘ 𝑆 )  ⊆  ( Poly ‘ ℂ ) | 
						
							| 4 | 3 | sseli | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 5 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 6 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 7 |  | plyconst | ⊢ ( ( ℂ  ⊆  ℂ  ∧  - 1  ∈  ℂ )  →  ( ℂ  ×  { - 1 } )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 8 | 5 6 7 | mp2an | ⊢ ( ℂ  ×  { - 1 } )  ∈  ( Poly ‘ ℂ ) | 
						
							| 9 | 3 | sseli | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  𝐺  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 10 |  | plymulcl | ⊢ ( ( ( ℂ  ×  { - 1 } )  ∈  ( Poly ‘ ℂ )  ∧  𝐺  ∈  ( Poly ‘ ℂ ) )  →  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 11 | 8 9 10 | sylancr | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 12 |  | eqid | ⊢ ( deg ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( deg ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) | 
						
							| 13 | 1 12 | dgradd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℂ )  ∧  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 )  ∈  ( Poly ‘ ℂ ) )  →  ( deg ‘ ( 𝐹  ∘f   +  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) )  ≤  if ( 𝑀  ≤  ( deg ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) ,  ( deg ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) ,  𝑀 ) ) | 
						
							| 14 | 4 11 13 | syl2an | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( deg ‘ ( 𝐹  ∘f   +  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) )  ≤  if ( 𝑀  ≤  ( deg ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) ,  ( deg ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) ,  𝑀 ) ) | 
						
							| 15 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 16 |  | plyf | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 17 |  | plyf | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 18 |  | ofnegsub | ⊢ ( ( ℂ  ∈  V  ∧  𝐹 : ℂ ⟶ ℂ  ∧  𝐺 : ℂ ⟶ ℂ )  →  ( 𝐹  ∘f   +  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( 𝐹  ∘f   −  𝐺 ) ) | 
						
							| 19 | 15 16 17 18 | mp3an3an | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐹  ∘f   +  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( 𝐹  ∘f   −  𝐺 ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( deg ‘ ( 𝐹  ∘f   +  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) )  =  ( deg ‘ ( 𝐹  ∘f   −  𝐺 ) ) ) | 
						
							| 21 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 22 |  | dgrmulc | ⊢ ( ( - 1  ∈  ℂ  ∧  - 1  ≠  0  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( deg ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( deg ‘ 𝐺 ) ) | 
						
							| 23 | 6 21 22 | mp3an12 | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( deg ‘ 𝐺 ) ) | 
						
							| 24 | 23 2 | eqtr4di | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  𝑁 ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( deg ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  𝑁 ) | 
						
							| 26 | 25 | breq2d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝑀  ≤  ( deg ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  ↔  𝑀  ≤  𝑁 ) ) | 
						
							| 27 | 26 25 | ifbieq1d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  if ( 𝑀  ≤  ( deg ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) ,  ( deg ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) ,  𝑀 )  =  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) | 
						
							| 28 | 14 20 27 | 3brtr3d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( deg ‘ ( 𝐹  ∘f   −  𝐺 ) )  ≤  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) |