Step |
Hyp |
Ref |
Expression |
1 |
|
dgrsub.1 |
⊢ 𝑀 = ( deg ‘ 𝐹 ) |
2 |
|
dgrsub.2 |
⊢ 𝑁 = ( deg ‘ 𝐺 ) |
3 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
4 |
3
|
sseli |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
5 |
|
ssid |
⊢ ℂ ⊆ ℂ |
6 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
7 |
|
plyconst |
⊢ ( ( ℂ ⊆ ℂ ∧ - 1 ∈ ℂ ) → ( ℂ × { - 1 } ) ∈ ( Poly ‘ ℂ ) ) |
8 |
5 6 7
|
mp2an |
⊢ ( ℂ × { - 1 } ) ∈ ( Poly ‘ ℂ ) |
9 |
3
|
sseli |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → 𝐺 ∈ ( Poly ‘ ℂ ) ) |
10 |
|
plymulcl |
⊢ ( ( ( ℂ × { - 1 } ) ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ∈ ( Poly ‘ ℂ ) ) → ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ∈ ( Poly ‘ ℂ ) ) |
11 |
8 9 10
|
sylancr |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ∈ ( Poly ‘ ℂ ) ) |
12 |
|
eqid |
⊢ ( deg ‘ ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) = ( deg ‘ ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) |
13 |
1 12
|
dgradd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ∈ ( Poly ‘ ℂ ) ) → ( deg ‘ ( 𝐹 ∘f + ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) ) ≤ if ( 𝑀 ≤ ( deg ‘ ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) , ( deg ‘ ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) , 𝑀 ) ) |
14 |
4 11 13
|
syl2an |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( deg ‘ ( 𝐹 ∘f + ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) ) ≤ if ( 𝑀 ≤ ( deg ‘ ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) , ( deg ‘ ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) , 𝑀 ) ) |
15 |
|
cnex |
⊢ ℂ ∈ V |
16 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ ) |
17 |
|
plyf |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → 𝐺 : ℂ ⟶ ℂ ) |
18 |
|
ofnegsub |
⊢ ( ( ℂ ∈ V ∧ 𝐹 : ℂ ⟶ ℂ ∧ 𝐺 : ℂ ⟶ ℂ ) → ( 𝐹 ∘f + ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) = ( 𝐹 ∘f − 𝐺 ) ) |
19 |
15 16 17 18
|
mp3an3an |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( 𝐹 ∘f + ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) = ( 𝐹 ∘f − 𝐺 ) ) |
20 |
19
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( deg ‘ ( 𝐹 ∘f + ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) ) = ( deg ‘ ( 𝐹 ∘f − 𝐺 ) ) ) |
21 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
22 |
|
dgrmulc |
⊢ ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( deg ‘ ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) = ( deg ‘ 𝐺 ) ) |
23 |
6 21 22
|
mp3an12 |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) = ( deg ‘ 𝐺 ) ) |
24 |
23 2
|
eqtr4di |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) = 𝑁 ) |
25 |
24
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( deg ‘ ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) = 𝑁 ) |
26 |
25
|
breq2d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( 𝑀 ≤ ( deg ‘ ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) ↔ 𝑀 ≤ 𝑁 ) ) |
27 |
26 25
|
ifbieq1d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → if ( 𝑀 ≤ ( deg ‘ ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) , ( deg ‘ ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) , 𝑀 ) = if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
28 |
14 20 27
|
3brtr3d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( deg ‘ ( 𝐹 ∘f − 𝐺 ) ) ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |