Metamath Proof Explorer


Theorem diadmclN

Description: A member of domain of the partial isomorphism A is a lattice element. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses diadmcl.b 𝐵 = ( Base ‘ 𝐾 )
diadmcl.h 𝐻 = ( LHyp ‘ 𝐾 )
diadmcl.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
Assertion diadmclN ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑋 ∈ dom 𝐼 ) → 𝑋𝐵 )

Proof

Step Hyp Ref Expression
1 diadmcl.b 𝐵 = ( Base ‘ 𝐾 )
2 diadmcl.h 𝐻 = ( LHyp ‘ 𝐾 )
3 diadmcl.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
4 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
5 1 4 2 3 diaeldm ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝑋 ∈ dom 𝐼 ↔ ( 𝑋𝐵𝑋 ( le ‘ 𝐾 ) 𝑊 ) ) )
6 5 simprbda ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑋 ∈ dom 𝐼 ) → 𝑋𝐵 )