| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag1.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) |
| 2 |
|
diag1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 3 |
|
diag1.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 4 |
|
diag1.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 5 |
|
diag1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 6 |
|
diag1.k |
⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) |
| 7 |
|
diag1.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 8 |
|
diag1.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
| 9 |
|
diag1.i |
⊢ 1 = ( Id ‘ 𝐶 ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
diag1 |
⊢ ( 𝜑 → 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) 〉 ) |
| 11 |
|
fconstmpt |
⊢ ( 𝐵 × { 𝑋 } ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) |
| 12 |
|
fconstmpt |
⊢ ( ( 𝑦 𝐽 𝑧 ) × { ( 1 ‘ 𝑋 ) } ) = ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) |
| 13 |
12
|
a1i |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑦 𝐽 𝑧 ) × { ( 1 ‘ 𝑋 ) } ) = ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) |
| 14 |
13
|
mpoeq3ia |
⊢ ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 𝐽 𝑧 ) × { ( 1 ‘ 𝑋 ) } ) ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) |
| 15 |
11 14
|
opeq12i |
⊢ 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 𝐽 𝑧 ) × { ( 1 ‘ 𝑋 ) } ) ) 〉 = 〈 ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) 〉 |
| 16 |
10 15
|
eqtr4di |
⊢ ( 𝜑 → 𝐾 = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 𝐽 𝑧 ) × { ( 1 ‘ 𝑋 ) } ) ) 〉 ) |