Metamath Proof Explorer


Theorem dibval3N

Description: Value of the partial isomorphism B for a lattice K . (Contributed by NM, 24-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibval3.b 𝐵 = ( Base ‘ 𝐾 )
dibval3.l = ( le ‘ 𝐾 )
dibval3.h 𝐻 = ( LHyp ‘ 𝐾 )
dibval3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dibval3.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
dibval3.o 0 = ( 𝑔𝑇 ↦ ( I ↾ 𝐵 ) )
dibval3.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
Assertion dibval3N ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = ( { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑋 } × { 0 } ) )

Proof

Step Hyp Ref Expression
1 dibval3.b 𝐵 = ( Base ‘ 𝐾 )
2 dibval3.l = ( le ‘ 𝐾 )
3 dibval3.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dibval3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 dibval3.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 dibval3.o 0 = ( 𝑔𝑇 ↦ ( I ↾ 𝐵 ) )
7 dibval3.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
8 eqid ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
9 1 2 3 4 6 8 7 dibval2 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) )
10 1 2 3 4 5 8 diaval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) = { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑋 } )
11 10 xpeq1d ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { 0 } ) = ( { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑋 } × { 0 } ) )
12 9 11 eqtrd ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = ( { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑋 } × { 0 } ) )