Metamath Proof Explorer


Theorem diclspsn

Description: The value of isomorphism C is spanned by vector F . Part of proof of Lemma N of Crawley p. 121 line 29. (Contributed by NM, 21-Feb-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses diclspsn.l = ( le ‘ 𝐾 )
diclspsn.a 𝐴 = ( Atoms ‘ 𝐾 )
diclspsn.h 𝐻 = ( LHyp ‘ 𝐾 )
diclspsn.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
diclspsn.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
diclspsn.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
diclspsn.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
diclspsn.n 𝑁 = ( LSpan ‘ 𝑈 )
diclspsn.f 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )
Assertion diclspsn ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = ( 𝑁 ‘ { ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ } ) )

Proof

Step Hyp Ref Expression
1 diclspsn.l = ( le ‘ 𝐾 )
2 diclspsn.a 𝐴 = ( Atoms ‘ 𝐾 )
3 diclspsn.h 𝐻 = ( LHyp ‘ 𝐾 )
4 diclspsn.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
5 diclspsn.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 diclspsn.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
7 diclspsn.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
8 diclspsn.n 𝑁 = ( LSpan ‘ 𝑈 )
9 diclspsn.f 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )
10 df-rab { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } = { 𝑣 ∣ ( 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ) }
11 relopabv Rel { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦 = ( 𝑧𝐹 ) ∧ 𝑧 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) }
12 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
13 1 2 3 4 5 12 6 9 dicval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦 = ( 𝑧𝐹 ) ∧ 𝑧 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } )
14 13 releqd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( Rel ( 𝐼𝑄 ) ↔ Rel { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦 = ( 𝑧𝐹 ) ∧ 𝑧 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) )
15 11 14 mpbiri ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → Rel ( 𝐼𝑄 ) )
16 ssrab2 { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } ⊆ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
17 relxp Rel ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
18 relss ( { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } ⊆ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( Rel ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → Rel { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } ) )
19 16 17 18 mp2 Rel { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) }
20 19 a1i ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → Rel { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } )
21 id ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
22 vex 𝑔 ∈ V
23 vex 𝑠 ∈ V
24 1 2 3 4 5 12 6 9 22 23 dicopelval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ⟨ 𝑔 , 𝑠 ⟩ ∈ ( 𝐼𝑄 ) ↔ ( 𝑔 = ( 𝑠𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
25 simprl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑔 = ( 𝑠𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 𝑔 = ( 𝑠𝐹 ) )
26 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑔 = ( 𝑠𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
27 simprr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑔 = ( 𝑠𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
28 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
29 1 2 3 4 lhpocnel2 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
30 29 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
31 simpr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
32 1 2 3 5 9 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐹𝑇 )
33 28 30 31 32 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐹𝑇 )
34 33 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑔 = ( 𝑠𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 𝐹𝑇 )
35 3 5 12 tendocl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝐹𝑇 ) → ( 𝑠𝐹 ) ∈ 𝑇 )
36 26 27 34 35 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑔 = ( 𝑠𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑠𝐹 ) ∈ 𝑇 )
37 25 36 eqeltrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑔 = ( 𝑠𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 𝑔𝑇 )
38 37 27 25 3jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑔 = ( 𝑠𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠𝐹 ) ) )
39 simpr3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠𝐹 ) ) ) → 𝑔 = ( 𝑠𝐹 ) )
40 simpr2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠𝐹 ) ) ) → 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
41 39 40 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠𝐹 ) ) ) → ( 𝑔 = ( 𝑠𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
42 38 41 impbida ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑔 = ( 𝑠𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠𝐹 ) ) ) )
43 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
44 eqid ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) )
45 3 12 7 43 44 dvhbase ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
46 45 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
47 46 rexeqdv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ↔ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ) )
48 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
49 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
50 33 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝐹𝑇 )
51 3 5 12 tendoidcl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
52 51 ad2antrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
53 eqid ( ·𝑠𝑈 ) = ( ·𝑠𝑈 )
54 3 5 12 7 53 dvhopvsca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝐹𝑇 ∧ ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) = ⟨ ( 𝑥𝐹 ) , ( 𝑥 ∘ ( I ↾ 𝑇 ) ) ⟩ )
55 48 49 50 52 54 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) = ⟨ ( 𝑥𝐹 ) , ( 𝑥 ∘ ( I ↾ 𝑇 ) ) ⟩ )
56 55 eqeq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ↔ ⟨ 𝑔 , 𝑠 ⟩ = ⟨ ( 𝑥𝐹 ) , ( 𝑥 ∘ ( I ↾ 𝑇 ) ) ⟩ ) )
57 22 23 opth ( ⟨ 𝑔 , 𝑠 ⟩ = ⟨ ( 𝑥𝐹 ) , ( 𝑥 ∘ ( I ↾ 𝑇 ) ) ⟩ ↔ ( 𝑔 = ( 𝑥𝐹 ) ∧ 𝑠 = ( 𝑥 ∘ ( I ↾ 𝑇 ) ) ) )
58 56 57 bitrdi ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ↔ ( 𝑔 = ( 𝑥𝐹 ) ∧ 𝑠 = ( 𝑥 ∘ ( I ↾ 𝑇 ) ) ) ) )
59 3 5 12 tendo1mulr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ∘ ( I ↾ 𝑇 ) ) = 𝑥 )
60 59 adantlr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ∘ ( I ↾ 𝑇 ) ) = 𝑥 )
61 60 eqeq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑠 = ( 𝑥 ∘ ( I ↾ 𝑇 ) ) ↔ 𝑠 = 𝑥 ) )
62 equcom ( 𝑠 = 𝑥𝑥 = 𝑠 )
63 61 62 bitrdi ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑠 = ( 𝑥 ∘ ( I ↾ 𝑇 ) ) ↔ 𝑥 = 𝑠 ) )
64 63 anbi2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( 𝑔 = ( 𝑥𝐹 ) ∧ 𝑠 = ( 𝑥 ∘ ( I ↾ 𝑇 ) ) ) ↔ ( 𝑔 = ( 𝑥𝐹 ) ∧ 𝑥 = 𝑠 ) ) )
65 58 64 bitrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ↔ ( 𝑔 = ( 𝑥𝐹 ) ∧ 𝑥 = 𝑠 ) ) )
66 ancom ( ( 𝑔 = ( 𝑥𝐹 ) ∧ 𝑥 = 𝑠 ) ↔ ( 𝑥 = 𝑠𝑔 = ( 𝑥𝐹 ) ) )
67 65 66 bitrdi ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ↔ ( 𝑥 = 𝑠𝑔 = ( 𝑥𝐹 ) ) ) )
68 67 rexbidva ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ↔ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠𝑔 = ( 𝑥𝐹 ) ) ) )
69 47 68 bitrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ↔ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠𝑔 = ( 𝑥𝐹 ) ) ) )
70 69 3anbi3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ) ↔ ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠𝑔 = ( 𝑥𝐹 ) ) ) ) )
71 fveq1 ( 𝑥 = 𝑠 → ( 𝑥𝐹 ) = ( 𝑠𝐹 ) )
72 71 eqeq2d ( 𝑥 = 𝑠 → ( 𝑔 = ( 𝑥𝐹 ) ↔ 𝑔 = ( 𝑠𝐹 ) ) )
73 72 ceqsrexv ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) → ( ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠𝑔 = ( 𝑥𝐹 ) ) ↔ 𝑔 = ( 𝑠𝐹 ) ) )
74 73 pm5.32i ( ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠𝑔 = ( 𝑥𝐹 ) ) ) ↔ ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠𝐹 ) ) )
75 74 anbi2i ( ( 𝑔𝑇 ∧ ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠𝑔 = ( 𝑥𝐹 ) ) ) ) ↔ ( 𝑔𝑇 ∧ ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠𝐹 ) ) ) )
76 3anass ( ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠𝑔 = ( 𝑥𝐹 ) ) ) ↔ ( 𝑔𝑇 ∧ ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠𝑔 = ( 𝑥𝐹 ) ) ) ) )
77 3anass ( ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠𝐹 ) ) ↔ ( 𝑔𝑇 ∧ ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠𝐹 ) ) ) )
78 75 76 77 3bitr4i ( ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠𝑔 = ( 𝑥𝐹 ) ) ) ↔ ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠𝐹 ) ) )
79 70 78 bitr2di ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠𝐹 ) ) ↔ ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ) ) )
80 42 79 bitrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑔 = ( 𝑠𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ) ) )
81 eqeq1 ( 𝑣 = ⟨ 𝑔 , 𝑠 ⟩ → ( 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ↔ ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ) )
82 81 rexbidv ( 𝑣 = ⟨ 𝑔 , 𝑠 ⟩ → ( ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ) )
83 82 rabxp { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } = { ⟨ 𝑔 , 𝑠 ⟩ ∣ ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ) }
84 83 eleq2i ( ⟨ 𝑔 , 𝑠 ⟩ ∈ { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } ↔ ⟨ 𝑔 , 𝑠 ⟩ ∈ { ⟨ 𝑔 , 𝑠 ⟩ ∣ ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ) } )
85 opabidw ( ⟨ 𝑔 , 𝑠 ⟩ ∈ { ⟨ 𝑔 , 𝑠 ⟩ ∣ ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ) } ↔ ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ) )
86 84 85 bitr2i ( ( 𝑔𝑇𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟨ 𝑔 , 𝑠 ⟩ = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ) ↔ ⟨ 𝑔 , 𝑠 ⟩ ∈ { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } )
87 80 86 bitrdi ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑔 = ( 𝑠𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ ⟨ 𝑔 , 𝑠 ⟩ ∈ { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } ) )
88 24 87 bitrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ⟨ 𝑔 , 𝑠 ⟩ ∈ ( 𝐼𝑄 ) ↔ ⟨ 𝑔 , 𝑠 ⟩ ∈ { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } ) )
89 88 eqrelrdv2 ( ( ( Rel ( 𝐼𝑄 ) ∧ Rel { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } ) ∧ ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝐼𝑄 ) = { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } )
90 15 20 21 89 syl21anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } )
91 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
92 46 eleq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ↔ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
93 92 biimpa ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
94 51 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
95 opelxpi ( ( 𝐹𝑇 ∧ ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
96 33 94 95 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
97 96 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) → ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
98 3 5 12 7 53 dvhvscacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
99 91 93 97 98 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
100 eleq1a ( ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) → 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
101 99 100 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) → 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
102 101 rexlimdva ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) → 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
103 102 pm4.71rd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ↔ ( 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ) ) )
104 103 abbidv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → { 𝑣 ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } = { 𝑣 ∣ ( 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) ) } )
105 10 90 104 3eqtr4a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = { 𝑣 ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } )
106 3 7 28 dvhlmod ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝑈 ∈ LMod )
107 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
108 3 5 12 7 107 dvhelvbasei ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ∈ ( Base ‘ 𝑈 ) )
109 28 33 94 108 syl12anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ∈ ( Base ‘ 𝑈 ) )
110 43 44 107 53 8 lspsn ( ( 𝑈 ∈ LMod ∧ ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ∈ ( Base ‘ 𝑈 ) ) → ( 𝑁 ‘ { ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ } ) = { 𝑣 ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } )
111 106 109 110 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑁 ‘ { ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ } ) = { 𝑣 ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠𝑈 ) ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ ) } )
112 105 111 eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = ( 𝑁 ‘ { ⟨ 𝐹 , ( I ↾ 𝑇 ) ⟩ } ) )