Step |
Hyp |
Ref |
Expression |
1 |
|
peano2 |
⊢ ( 𝑀 ∈ ω → suc 𝑀 ∈ ω ) |
2 |
|
breq2 |
⊢ ( 𝑥 = suc 𝑀 → ( 𝐴 ≈ 𝑥 ↔ 𝐴 ≈ suc 𝑀 ) ) |
3 |
2
|
rspcev |
⊢ ( ( suc 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ) → ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) |
4 |
|
isfi |
⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) |
5 |
3 4
|
sylibr |
⊢ ( ( suc 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ) → 𝐴 ∈ Fin ) |
6 |
1 5
|
sylan |
⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ) → 𝐴 ∈ Fin ) |
7 |
|
diffi |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝑋 } ) ∈ Fin ) |
8 |
|
isfi |
⊢ ( ( 𝐴 ∖ { 𝑋 } ) ∈ Fin ↔ ∃ 𝑥 ∈ ω ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ) |
9 |
7 8
|
sylib |
⊢ ( 𝐴 ∈ Fin → ∃ 𝑥 ∈ ω ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ) |
10 |
6 9
|
syl |
⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ) → ∃ 𝑥 ∈ ω ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ) |
11 |
10
|
3adant3 |
⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑥 ∈ ω ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ) |
12 |
|
en2sn |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑥 ∈ V ) → { 𝑋 } ≈ { 𝑥 } ) |
13 |
12
|
elvd |
⊢ ( 𝑋 ∈ 𝐴 → { 𝑋 } ≈ { 𝑥 } ) |
14 |
|
nnord |
⊢ ( 𝑥 ∈ ω → Ord 𝑥 ) |
15 |
|
orddisj |
⊢ ( Ord 𝑥 → ( 𝑥 ∩ { 𝑥 } ) = ∅ ) |
16 |
14 15
|
syl |
⊢ ( 𝑥 ∈ ω → ( 𝑥 ∩ { 𝑥 } ) = ∅ ) |
17 |
|
incom |
⊢ ( ( 𝐴 ∖ { 𝑋 } ) ∩ { 𝑋 } ) = ( { 𝑋 } ∩ ( 𝐴 ∖ { 𝑋 } ) ) |
18 |
|
disjdif |
⊢ ( { 𝑋 } ∩ ( 𝐴 ∖ { 𝑋 } ) ) = ∅ |
19 |
17 18
|
eqtri |
⊢ ( ( 𝐴 ∖ { 𝑋 } ) ∩ { 𝑋 } ) = ∅ |
20 |
|
unen |
⊢ ( ( ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ∧ { 𝑋 } ≈ { 𝑥 } ) ∧ ( ( ( 𝐴 ∖ { 𝑋 } ) ∩ { 𝑋 } ) = ∅ ∧ ( 𝑥 ∩ { 𝑥 } ) = ∅ ) ) → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) |
21 |
20
|
an4s |
⊢ ( ( ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ∧ ( ( 𝐴 ∖ { 𝑋 } ) ∩ { 𝑋 } ) = ∅ ) ∧ ( { 𝑋 } ≈ { 𝑥 } ∧ ( 𝑥 ∩ { 𝑥 } ) = ∅ ) ) → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) |
22 |
19 21
|
mpanl2 |
⊢ ( ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ∧ ( { 𝑋 } ≈ { 𝑥 } ∧ ( 𝑥 ∩ { 𝑥 } ) = ∅ ) ) → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) |
23 |
22
|
expcom |
⊢ ( ( { 𝑋 } ≈ { 𝑥 } ∧ ( 𝑥 ∩ { 𝑥 } ) = ∅ ) → ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) ) |
24 |
13 16 23
|
syl2an |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑥 ∈ ω ) → ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) ) |
25 |
24
|
3ad2antl3 |
⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) ) |
26 |
|
difsnid |
⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) = 𝐴 ) |
27 |
|
df-suc |
⊢ suc 𝑥 = ( 𝑥 ∪ { 𝑥 } ) |
28 |
27
|
eqcomi |
⊢ ( 𝑥 ∪ { 𝑥 } ) = suc 𝑥 |
29 |
28
|
a1i |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑥 ∪ { 𝑥 } ) = suc 𝑥 ) |
30 |
26 29
|
breq12d |
⊢ ( 𝑋 ∈ 𝐴 → ( ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ↔ 𝐴 ≈ suc 𝑥 ) ) |
31 |
30
|
3ad2ant3 |
⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) → ( ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ↔ 𝐴 ≈ suc 𝑥 ) ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ ω ) → ( ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ↔ 𝐴 ≈ suc 𝑥 ) ) |
33 |
|
ensym |
⊢ ( 𝐴 ≈ suc 𝑀 → suc 𝑀 ≈ 𝐴 ) |
34 |
|
entr |
⊢ ( ( suc 𝑀 ≈ 𝐴 ∧ 𝐴 ≈ suc 𝑥 ) → suc 𝑀 ≈ suc 𝑥 ) |
35 |
|
peano2 |
⊢ ( 𝑥 ∈ ω → suc 𝑥 ∈ ω ) |
36 |
|
nneneq |
⊢ ( ( suc 𝑀 ∈ ω ∧ suc 𝑥 ∈ ω ) → ( suc 𝑀 ≈ suc 𝑥 ↔ suc 𝑀 = suc 𝑥 ) ) |
37 |
35 36
|
sylan2 |
⊢ ( ( suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) → ( suc 𝑀 ≈ suc 𝑥 ↔ suc 𝑀 = suc 𝑥 ) ) |
38 |
34 37
|
syl5ib |
⊢ ( ( suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) → ( ( suc 𝑀 ≈ 𝐴 ∧ 𝐴 ≈ suc 𝑥 ) → suc 𝑀 = suc 𝑥 ) ) |
39 |
38
|
expd |
⊢ ( ( suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) → ( suc 𝑀 ≈ 𝐴 → ( 𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥 ) ) ) |
40 |
33 39
|
syl5 |
⊢ ( ( suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 ≈ suc 𝑀 → ( 𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥 ) ) ) |
41 |
1 40
|
sylan |
⊢ ( ( 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 ≈ suc 𝑀 → ( 𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥 ) ) ) |
42 |
41
|
imp |
⊢ ( ( ( 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) ∧ 𝐴 ≈ suc 𝑀 ) → ( 𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥 ) ) |
43 |
42
|
an32s |
⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ) ∧ 𝑥 ∈ ω ) → ( 𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥 ) ) |
44 |
43
|
3adantl3 |
⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ ω ) → ( 𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥 ) ) |
45 |
32 44
|
sylbid |
⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ ω ) → ( ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) → suc 𝑀 = suc 𝑥 ) ) |
46 |
|
peano4 |
⊢ ( ( 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) → ( suc 𝑀 = suc 𝑥 ↔ 𝑀 = 𝑥 ) ) |
47 |
46
|
biimpd |
⊢ ( ( 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) → ( suc 𝑀 = suc 𝑥 → 𝑀 = 𝑥 ) ) |
48 |
47
|
3ad2antl1 |
⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ ω ) → ( suc 𝑀 = suc 𝑥 → 𝑀 = 𝑥 ) ) |
49 |
25 45 48
|
3syld |
⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 → 𝑀 = 𝑥 ) ) |
50 |
|
breq2 |
⊢ ( 𝑀 = 𝑥 → ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ↔ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ) ) |
51 |
50
|
biimprcd |
⊢ ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 → ( 𝑀 = 𝑥 → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) ) |
52 |
49 51
|
sylcom |
⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) ) |
53 |
52
|
rexlimdva |
⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ ω ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) ) |
54 |
11 53
|
mpd |
⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) |