Description: Two ways to say that A is a nonzero number of the set B . (Contributed by Mario Carneiro, 21-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dif1o | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ 1o ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 | ⊢ 1o = { ∅ } | |
2 | 1 | difeq2i | ⊢ ( 𝐵 ∖ 1o ) = ( 𝐵 ∖ { ∅ } ) |
3 | 2 | eleq2i | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ 1o ) ↔ 𝐴 ∈ ( 𝐵 ∖ { ∅ } ) ) |
4 | eldifsn | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ { ∅ } ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅ ) ) | |
5 | 3 4 | bitri | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ 1o ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅ ) ) |