Metamath Proof Explorer


Theorem dif1o

Description: Two ways to say that A is a nonzero number of the set B . (Contributed by Mario Carneiro, 21-May-2015)

Ref Expression
Assertion dif1o ( 𝐴 ∈ ( 𝐵 ∖ 1o ) ↔ ( 𝐴𝐵𝐴 ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 df1o2 1o = { ∅ }
2 1 difeq2i ( 𝐵 ∖ 1o ) = ( 𝐵 ∖ { ∅ } )
3 2 eleq2i ( 𝐴 ∈ ( 𝐵 ∖ 1o ) ↔ 𝐴 ∈ ( 𝐵 ∖ { ∅ } ) )
4 eldifsn ( 𝐴 ∈ ( 𝐵 ∖ { ∅ } ) ↔ ( 𝐴𝐵𝐴 ≠ ∅ ) )
5 3 4 bitri ( 𝐴 ∈ ( 𝐵 ∖ 1o ) ↔ ( 𝐴𝐵𝐴 ≠ ∅ ) )