Metamath Proof Explorer


Theorem dif32

Description: Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004)

Ref Expression
Assertion dif32 ( ( 𝐴𝐵 ) ∖ 𝐶 ) = ( ( 𝐴𝐶 ) ∖ 𝐵 )

Proof

Step Hyp Ref Expression
1 uncom ( 𝐵𝐶 ) = ( 𝐶𝐵 )
2 1 difeq2i ( 𝐴 ∖ ( 𝐵𝐶 ) ) = ( 𝐴 ∖ ( 𝐶𝐵 ) )
3 difun1 ( 𝐴 ∖ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∖ 𝐶 )
4 difun1 ( 𝐴 ∖ ( 𝐶𝐵 ) ) = ( ( 𝐴𝐶 ) ∖ 𝐵 )
5 2 3 4 3eqtr3i ( ( 𝐴𝐵 ) ∖ 𝐶 ) = ( ( 𝐴𝐶 ) ∖ 𝐵 )