Step |
Hyp |
Ref |
Expression |
1 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ ¬ 𝜓 ) } ↔ [ 𝑦 / 𝑥 ] ( 𝜑 ∧ ¬ 𝜓 ) ) |
2 |
|
sban |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ ¬ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] ¬ 𝜓 ) ) |
3 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
4 |
3
|
bicomi |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) |
5 |
|
sbn |
⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝜓 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜓 ) |
6 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) |
7 |
5 6
|
xchbinxr |
⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝜓 ↔ ¬ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) |
8 |
4 7
|
anbi12i |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] ¬ 𝜓 ) ↔ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∧ ¬ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ) |
9 |
1 2 8
|
3bitrri |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∧ ¬ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ ¬ 𝜓 ) } ) |
10 |
9
|
difeqri |
⊢ ( { 𝑥 ∣ 𝜑 } ∖ { 𝑥 ∣ 𝜓 } ) = { 𝑥 ∣ ( 𝜑 ∧ ¬ 𝜓 ) } |