Description: Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difcom | ⊢ ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ↔ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom | ⊢ ( 𝐵 ∪ 𝐶 ) = ( 𝐶 ∪ 𝐵 ) | |
| 2 | 1 | sseq2i | ⊢ ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ ( 𝐶 ∪ 𝐵 ) ) |
| 3 | ssundif | ⊢ ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ) | |
| 4 | ssundif | ⊢ ( 𝐴 ⊆ ( 𝐶 ∪ 𝐵 ) ↔ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐵 ) | |
| 5 | 2 3 4 | 3bitr3i | ⊢ ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ↔ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐵 ) |