Description: Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | difcom | ⊢ ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ↔ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom | ⊢ ( 𝐵 ∪ 𝐶 ) = ( 𝐶 ∪ 𝐵 ) | |
2 | 1 | sseq2i | ⊢ ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ ( 𝐶 ∪ 𝐵 ) ) |
3 | ssundif | ⊢ ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ) | |
4 | ssundif | ⊢ ( 𝐴 ⊆ ( 𝐶 ∪ 𝐵 ) ↔ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐵 ) | |
5 | 2 3 4 | 3bitr3i | ⊢ ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ↔ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐵 ) |