Metamath Proof Explorer


Theorem difdif2

Description: Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017)

Ref Expression
Assertion difdif2 ( 𝐴 ∖ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 difindi ( 𝐴 ∖ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴𝐵 ) ∪ ( 𝐴 ∖ ( V ∖ 𝐶 ) ) )
2 invdif ( 𝐵 ∩ ( V ∖ 𝐶 ) ) = ( 𝐵𝐶 )
3 2 eqcomi ( 𝐵𝐶 ) = ( 𝐵 ∩ ( V ∖ 𝐶 ) )
4 3 difeq2i ( 𝐴 ∖ ( 𝐵𝐶 ) ) = ( 𝐴 ∖ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) )
5 dfin2 ( 𝐴𝐶 ) = ( 𝐴 ∖ ( V ∖ 𝐶 ) )
6 5 uneq2i ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐶 ) ) = ( ( 𝐴𝐵 ) ∪ ( 𝐴 ∖ ( V ∖ 𝐶 ) ) )
7 1 4 6 3eqtr4i ( 𝐴 ∖ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐶 ) )