Description: Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | difdif2 | ⊢ ( 𝐴 ∖ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∩ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difindi | ⊢ ( 𝐴 ∖ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∖ ( V ∖ 𝐶 ) ) ) | |
2 | invdif | ⊢ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) = ( 𝐵 ∖ 𝐶 ) | |
3 | 2 | eqcomi | ⊢ ( 𝐵 ∖ 𝐶 ) = ( 𝐵 ∩ ( V ∖ 𝐶 ) ) |
4 | 3 | difeq2i | ⊢ ( 𝐴 ∖ ( 𝐵 ∖ 𝐶 ) ) = ( 𝐴 ∖ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) |
5 | dfin2 | ⊢ ( 𝐴 ∩ 𝐶 ) = ( 𝐴 ∖ ( V ∖ 𝐶 ) ) | |
6 | 5 | uneq2i | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∩ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∖ ( V ∖ 𝐶 ) ) ) |
7 | 1 4 6 | 3eqtr4i | ⊢ ( 𝐴 ∖ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∩ 𝐶 ) ) |