Step |
Hyp |
Ref |
Expression |
1 |
|
dif32 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∖ 𝐵 ) |
2 |
|
invdif |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) = ( ( 𝐴 ∖ 𝐶 ) ∖ 𝐵 ) |
3 |
1 2
|
eqtr4i |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) |
4 |
|
un0 |
⊢ ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ∅ ) = ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) |
5 |
3 4
|
eqtr4i |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ∅ ) |
6 |
|
indi |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐶 ) ) = ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐶 ) ) |
7 |
|
disjdif |
⊢ ( 𝐶 ∩ ( 𝐴 ∖ 𝐶 ) ) = ∅ |
8 |
|
incom |
⊢ ( 𝐶 ∩ ( 𝐴 ∖ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐶 ) |
9 |
7 8
|
eqtr3i |
⊢ ∅ = ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐶 ) |
10 |
9
|
uneq2i |
⊢ ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ∅ ) = ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐶 ) ) |
11 |
6 10
|
eqtr4i |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐶 ) ) = ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ∅ ) |
12 |
5 11
|
eqtr4i |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐶 ) ) |
13 |
|
ddif |
⊢ ( V ∖ ( V ∖ 𝐶 ) ) = 𝐶 |
14 |
13
|
uneq2i |
⊢ ( ( V ∖ 𝐵 ) ∪ ( V ∖ ( V ∖ 𝐶 ) ) ) = ( ( V ∖ 𝐵 ) ∪ 𝐶 ) |
15 |
|
indm |
⊢ ( V ∖ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( ( V ∖ 𝐵 ) ∪ ( V ∖ ( V ∖ 𝐶 ) ) ) |
16 |
|
invdif |
⊢ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) = ( 𝐵 ∖ 𝐶 ) |
17 |
16
|
difeq2i |
⊢ ( V ∖ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( V ∖ ( 𝐵 ∖ 𝐶 ) ) |
18 |
15 17
|
eqtr3i |
⊢ ( ( V ∖ 𝐵 ) ∪ ( V ∖ ( V ∖ 𝐶 ) ) ) = ( V ∖ ( 𝐵 ∖ 𝐶 ) ) |
19 |
14 18
|
eqtr3i |
⊢ ( ( V ∖ 𝐵 ) ∪ 𝐶 ) = ( V ∖ ( 𝐵 ∖ 𝐶 ) ) |
20 |
19
|
ineq2i |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ ( 𝐵 ∖ 𝐶 ) ) ) |
21 |
|
invdif |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ ( 𝐵 ∖ 𝐶 ) ) ) = ( ( 𝐴 ∖ 𝐶 ) ∖ ( 𝐵 ∖ 𝐶 ) ) |
22 |
12 20 21
|
3eqtri |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∖ ( 𝐵 ∖ 𝐶 ) ) |