| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dif32 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∖ 𝐵 ) |
| 2 |
|
invdif |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) = ( ( 𝐴 ∖ 𝐶 ) ∖ 𝐵 ) |
| 3 |
1 2
|
eqtr4i |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) |
| 4 |
|
un0 |
⊢ ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ∅ ) = ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) |
| 5 |
3 4
|
eqtr4i |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ∅ ) |
| 6 |
|
indi |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐶 ) ) = ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐶 ) ) |
| 7 |
|
disjdif |
⊢ ( 𝐶 ∩ ( 𝐴 ∖ 𝐶 ) ) = ∅ |
| 8 |
|
incom |
⊢ ( 𝐶 ∩ ( 𝐴 ∖ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐶 ) |
| 9 |
7 8
|
eqtr3i |
⊢ ∅ = ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐶 ) |
| 10 |
9
|
uneq2i |
⊢ ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ∅ ) = ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐶 ) ) |
| 11 |
6 10
|
eqtr4i |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐶 ) ) = ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ∅ ) |
| 12 |
5 11
|
eqtr4i |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐶 ) ) |
| 13 |
|
ddif |
⊢ ( V ∖ ( V ∖ 𝐶 ) ) = 𝐶 |
| 14 |
13
|
uneq2i |
⊢ ( ( V ∖ 𝐵 ) ∪ ( V ∖ ( V ∖ 𝐶 ) ) ) = ( ( V ∖ 𝐵 ) ∪ 𝐶 ) |
| 15 |
|
indm |
⊢ ( V ∖ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( ( V ∖ 𝐵 ) ∪ ( V ∖ ( V ∖ 𝐶 ) ) ) |
| 16 |
|
invdif |
⊢ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) = ( 𝐵 ∖ 𝐶 ) |
| 17 |
16
|
difeq2i |
⊢ ( V ∖ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( V ∖ ( 𝐵 ∖ 𝐶 ) ) |
| 18 |
15 17
|
eqtr3i |
⊢ ( ( V ∖ 𝐵 ) ∪ ( V ∖ ( V ∖ 𝐶 ) ) ) = ( V ∖ ( 𝐵 ∖ 𝐶 ) ) |
| 19 |
14 18
|
eqtr3i |
⊢ ( ( V ∖ 𝐵 ) ∪ 𝐶 ) = ( V ∖ ( 𝐵 ∖ 𝐶 ) ) |
| 20 |
19
|
ineq2i |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ ( 𝐵 ∖ 𝐶 ) ) ) |
| 21 |
|
invdif |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ ( 𝐵 ∖ 𝐶 ) ) ) = ( ( 𝐴 ∖ 𝐶 ) ∖ ( 𝐵 ∖ 𝐶 ) ) |
| 22 |
12 20 21
|
3eqtri |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∖ ( 𝐵 ∖ 𝐶 ) ) |