Description: A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | difelpw | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss | ⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 | |
2 | elpw2g | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) ) | |
3 | 1 2 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 𝐴 ) |