Metamath Proof Explorer


Theorem difeq

Description: Rewriting an equation with class difference, without using quantifiers. (Contributed by Thierry Arnoux, 24-Sep-2017)

Ref Expression
Assertion difeq ( ( 𝐴𝐵 ) = 𝐶 ↔ ( ( 𝐶𝐵 ) = ∅ ∧ ( 𝐶𝐵 ) = ( 𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 incom ( 𝐵 ∩ ( 𝐴𝐵 ) ) = ( ( 𝐴𝐵 ) ∩ 𝐵 )
2 disjdif ( 𝐵 ∩ ( 𝐴𝐵 ) ) = ∅
3 1 2 eqtr3i ( ( 𝐴𝐵 ) ∩ 𝐵 ) = ∅
4 ineq1 ( ( 𝐴𝐵 ) = 𝐶 → ( ( 𝐴𝐵 ) ∩ 𝐵 ) = ( 𝐶𝐵 ) )
5 3 4 syl5reqr ( ( 𝐴𝐵 ) = 𝐶 → ( 𝐶𝐵 ) = ∅ )
6 undif1 ( ( 𝐴𝐵 ) ∪ 𝐵 ) = ( 𝐴𝐵 )
7 uneq1 ( ( 𝐴𝐵 ) = 𝐶 → ( ( 𝐴𝐵 ) ∪ 𝐵 ) = ( 𝐶𝐵 ) )
8 6 7 syl5reqr ( ( 𝐴𝐵 ) = 𝐶 → ( 𝐶𝐵 ) = ( 𝐴𝐵 ) )
9 5 8 jca ( ( 𝐴𝐵 ) = 𝐶 → ( ( 𝐶𝐵 ) = ∅ ∧ ( 𝐶𝐵 ) = ( 𝐴𝐵 ) ) )
10 simpl ( ( ( 𝐶𝐵 ) = ∅ ∧ ( 𝐶𝐵 ) = ( 𝐴𝐵 ) ) → ( 𝐶𝐵 ) = ∅ )
11 disj3 ( ( 𝐶𝐵 ) = ∅ ↔ 𝐶 = ( 𝐶𝐵 ) )
12 eqcom ( 𝐶 = ( 𝐶𝐵 ) ↔ ( 𝐶𝐵 ) = 𝐶 )
13 11 12 bitri ( ( 𝐶𝐵 ) = ∅ ↔ ( 𝐶𝐵 ) = 𝐶 )
14 10 13 sylib ( ( ( 𝐶𝐵 ) = ∅ ∧ ( 𝐶𝐵 ) = ( 𝐴𝐵 ) ) → ( 𝐶𝐵 ) = 𝐶 )
15 difeq1 ( ( 𝐶𝐵 ) = ( 𝐴𝐵 ) → ( ( 𝐶𝐵 ) ∖ 𝐵 ) = ( ( 𝐴𝐵 ) ∖ 𝐵 ) )
16 difun2 ( ( 𝐶𝐵 ) ∖ 𝐵 ) = ( 𝐶𝐵 )
17 difun2 ( ( 𝐴𝐵 ) ∖ 𝐵 ) = ( 𝐴𝐵 )
18 15 16 17 3eqtr3g ( ( 𝐶𝐵 ) = ( 𝐴𝐵 ) → ( 𝐶𝐵 ) = ( 𝐴𝐵 ) )
19 18 eqeq1d ( ( 𝐶𝐵 ) = ( 𝐴𝐵 ) → ( ( 𝐶𝐵 ) = 𝐶 ↔ ( 𝐴𝐵 ) = 𝐶 ) )
20 19 adantl ( ( ( 𝐶𝐵 ) = ∅ ∧ ( 𝐶𝐵 ) = ( 𝐴𝐵 ) ) → ( ( 𝐶𝐵 ) = 𝐶 ↔ ( 𝐴𝐵 ) = 𝐶 ) )
21 14 20 mpbid ( ( ( 𝐶𝐵 ) = ∅ ∧ ( 𝐶𝐵 ) = ( 𝐴𝐵 ) ) → ( 𝐴𝐵 ) = 𝐶 )
22 9 21 impbii ( ( 𝐴𝐵 ) = 𝐶 ↔ ( ( 𝐶𝐵 ) = ∅ ∧ ( 𝐶𝐵 ) = ( 𝐴𝐵 ) ) )