Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difeq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∖ 𝐶 ) = ( 𝐵 ∖ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq | ⊢ ( 𝐴 = 𝐵 → { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶 } = { 𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶 } ) | |
| 2 | dfdif2 | ⊢ ( 𝐴 ∖ 𝐶 ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶 } | |
| 3 | dfdif2 | ⊢ ( 𝐵 ∖ 𝐶 ) = { 𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶 } | |
| 4 | 1 2 3 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∖ 𝐶 ) = ( 𝐵 ∖ 𝐶 ) ) |