Description: Equality deduction for class difference. (Contributed by FL, 29-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | difeq12d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| difeq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| Assertion | difeq12d | ⊢ ( 𝜑 → ( 𝐴 ∖ 𝐶 ) = ( 𝐵 ∖ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq12d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | difeq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 3 | 1 | difeq1d | ⊢ ( 𝜑 → ( 𝐴 ∖ 𝐶 ) = ( 𝐵 ∖ 𝐶 ) ) |
| 4 | 2 | difeq2d | ⊢ ( 𝜑 → ( 𝐵 ∖ 𝐶 ) = ( 𝐵 ∖ 𝐷 ) ) |
| 5 | 3 4 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 ∖ 𝐶 ) = ( 𝐵 ∖ 𝐷 ) ) |