Metamath Proof Explorer


Theorem difeq12d

Description: Equality deduction for class difference. (Contributed by FL, 29-May-2014)

Ref Expression
Hypotheses difeq12d.1 ( 𝜑𝐴 = 𝐵 )
difeq12d.2 ( 𝜑𝐶 = 𝐷 )
Assertion difeq12d ( 𝜑 → ( 𝐴𝐶 ) = ( 𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 difeq12d.1 ( 𝜑𝐴 = 𝐵 )
2 difeq12d.2 ( 𝜑𝐶 = 𝐷 )
3 1 difeq1d ( 𝜑 → ( 𝐴𝐶 ) = ( 𝐵𝐶 ) )
4 2 difeq2d ( 𝜑 → ( 𝐵𝐶 ) = ( 𝐵𝐷 ) )
5 3 4 eqtrd ( 𝜑 → ( 𝐴𝐶 ) = ( 𝐵𝐷 ) )