Metamath Proof Explorer


Theorem difeq12i

Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004)

Ref Expression
Hypotheses difeq1i.1 𝐴 = 𝐵
difeq12i.2 𝐶 = 𝐷
Assertion difeq12i ( 𝐴𝐶 ) = ( 𝐵𝐷 )

Proof

Step Hyp Ref Expression
1 difeq1i.1 𝐴 = 𝐵
2 difeq12i.2 𝐶 = 𝐷
3 1 difeq1i ( 𝐴𝐶 ) = ( 𝐵𝐶 )
4 2 difeq2i ( 𝐵𝐶 ) = ( 𝐵𝐷 )
5 3 4 eqtri ( 𝐴𝐶 ) = ( 𝐵𝐷 )