Metamath Proof Explorer
Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004)
|
|
Ref |
Expression |
|
Hypotheses |
difeq1i.1 |
⊢ 𝐴 = 𝐵 |
|
|
difeq12i.2 |
⊢ 𝐶 = 𝐷 |
|
Assertion |
difeq12i |
⊢ ( 𝐴 ∖ 𝐶 ) = ( 𝐵 ∖ 𝐷 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
difeq1i.1 |
⊢ 𝐴 = 𝐵 |
2 |
|
difeq12i.2 |
⊢ 𝐶 = 𝐷 |
3 |
1
|
difeq1i |
⊢ ( 𝐴 ∖ 𝐶 ) = ( 𝐵 ∖ 𝐶 ) |
4 |
2
|
difeq2i |
⊢ ( 𝐵 ∖ 𝐶 ) = ( 𝐵 ∖ 𝐷 ) |
5 |
3 4
|
eqtri |
⊢ ( 𝐴 ∖ 𝐶 ) = ( 𝐵 ∖ 𝐷 ) |