Metamath Proof Explorer


Theorem difeq2

Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion difeq2 ( 𝐴 = 𝐵 → ( 𝐶𝐴 ) = ( 𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝐴 = 𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
2 1 notbid ( 𝐴 = 𝐵 → ( ¬ 𝑥𝐴 ↔ ¬ 𝑥𝐵 ) )
3 2 rabbidv ( 𝐴 = 𝐵 → { 𝑥𝐶 ∣ ¬ 𝑥𝐴 } = { 𝑥𝐶 ∣ ¬ 𝑥𝐵 } )
4 dfdif2 ( 𝐶𝐴 ) = { 𝑥𝐶 ∣ ¬ 𝑥𝐴 }
5 dfdif2 ( 𝐶𝐵 ) = { 𝑥𝐶 ∣ ¬ 𝑥𝐵 }
6 3 4 5 3eqtr4g ( 𝐴 = 𝐵 → ( 𝐶𝐴 ) = ( 𝐶𝐵 ) )