Metamath Proof Explorer


Theorem difeq2i

Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002)

Ref Expression
Hypothesis difeq1i.1 𝐴 = 𝐵
Assertion difeq2i ( 𝐶𝐴 ) = ( 𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 difeq1i.1 𝐴 = 𝐵
2 difeq2 ( 𝐴 = 𝐵 → ( 𝐶𝐴 ) = ( 𝐶𝐵 ) )
3 1 2 ax-mp ( 𝐶𝐴 ) = ( 𝐶𝐵 )