Metamath Proof Explorer
Description: Inference from membership to difference. (Contributed by NM, 17-May-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)
|
|
Ref |
Expression |
|
Hypothesis |
difeqri.1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ 𝐶 ) |
|
Assertion |
difeqri |
⊢ ( 𝐴 ∖ 𝐵 ) = 𝐶 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difeqri.1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ 𝐶 ) |
| 2 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 3 |
2 1
|
bitri |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ 𝑥 ∈ 𝐶 ) |
| 4 |
3
|
eqriv |
⊢ ( 𝐴 ∖ 𝐵 ) = 𝐶 |