Step |
Hyp |
Ref |
Expression |
1 |
|
difexg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∖ 𝐵 ) ∈ V ) |
2 |
|
ssun2 |
⊢ 𝐴 ⊆ ( 𝐵 ∪ 𝐴 ) |
3 |
|
uncom |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) |
4 |
|
undif2 |
⊢ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐵 ∪ 𝐴 ) |
5 |
3 4
|
eqtr2i |
⊢ ( 𝐵 ∪ 𝐴 ) = ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) |
6 |
2 5
|
sseqtri |
⊢ 𝐴 ⊆ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) |
7 |
|
unexg |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∈ V ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∈ V ) |
8 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∈ V ) → 𝐴 ∈ V ) |
9 |
6 7 8
|
sylancr |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∈ V ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ V ) |
10 |
9
|
expcom |
⊢ ( 𝐵 ∈ 𝐶 → ( ( 𝐴 ∖ 𝐵 ) ∈ V → 𝐴 ∈ V ) ) |
11 |
1 10
|
impbid2 |
⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 ∈ V ↔ ( 𝐴 ∖ 𝐵 ) ∈ V ) ) |