| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difexg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∖  𝐵 )  ∈  V ) | 
						
							| 2 |  | ssun2 | ⊢ 𝐴  ⊆  ( 𝐵  ∪  𝐴 ) | 
						
							| 3 |  | uncom | ⊢ ( ( 𝐴  ∖  𝐵 )  ∪  𝐵 )  =  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 4 |  | undif2 | ⊢ ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) )  =  ( 𝐵  ∪  𝐴 ) | 
						
							| 5 | 3 4 | eqtr2i | ⊢ ( 𝐵  ∪  𝐴 )  =  ( ( 𝐴  ∖  𝐵 )  ∪  𝐵 ) | 
						
							| 6 | 2 5 | sseqtri | ⊢ 𝐴  ⊆  ( ( 𝐴  ∖  𝐵 )  ∪  𝐵 ) | 
						
							| 7 |  | unexg | ⊢ ( ( ( 𝐴  ∖  𝐵 )  ∈  V  ∧  𝐵  ∈  𝐶 )  →  ( ( 𝐴  ∖  𝐵 )  ∪  𝐵 )  ∈  V ) | 
						
							| 8 |  | ssexg | ⊢ ( ( 𝐴  ⊆  ( ( 𝐴  ∖  𝐵 )  ∪  𝐵 )  ∧  ( ( 𝐴  ∖  𝐵 )  ∪  𝐵 )  ∈  V )  →  𝐴  ∈  V ) | 
						
							| 9 | 6 7 8 | sylancr | ⊢ ( ( ( 𝐴  ∖  𝐵 )  ∈  V  ∧  𝐵  ∈  𝐶 )  →  𝐴  ∈  V ) | 
						
							| 10 | 9 | expcom | ⊢ ( 𝐵  ∈  𝐶  →  ( ( 𝐴  ∖  𝐵 )  ∈  V  →  𝐴  ∈  V ) ) | 
						
							| 11 | 1 10 | impbid2 | ⊢ ( 𝐵  ∈  𝐶  →  ( 𝐴  ∈  V  ↔  ( 𝐴  ∖  𝐵 )  ∈  V ) ) |