Metamath Proof Explorer


Theorem difex2

Description: If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion difex2 ( 𝐵𝐶 → ( 𝐴 ∈ V ↔ ( 𝐴𝐵 ) ∈ V ) )

Proof

Step Hyp Ref Expression
1 difexg ( 𝐴 ∈ V → ( 𝐴𝐵 ) ∈ V )
2 ssun2 𝐴 ⊆ ( 𝐵𝐴 )
3 uncom ( ( 𝐴𝐵 ) ∪ 𝐵 ) = ( 𝐵 ∪ ( 𝐴𝐵 ) )
4 undif2 ( 𝐵 ∪ ( 𝐴𝐵 ) ) = ( 𝐵𝐴 )
5 3 4 eqtr2i ( 𝐵𝐴 ) = ( ( 𝐴𝐵 ) ∪ 𝐵 )
6 2 5 sseqtri 𝐴 ⊆ ( ( 𝐴𝐵 ) ∪ 𝐵 )
7 unexg ( ( ( 𝐴𝐵 ) ∈ V ∧ 𝐵𝐶 ) → ( ( 𝐴𝐵 ) ∪ 𝐵 ) ∈ V )
8 ssexg ( ( 𝐴 ⊆ ( ( 𝐴𝐵 ) ∪ 𝐵 ) ∧ ( ( 𝐴𝐵 ) ∪ 𝐵 ) ∈ V ) → 𝐴 ∈ V )
9 6 7 8 sylancr ( ( ( 𝐴𝐵 ) ∈ V ∧ 𝐵𝐶 ) → 𝐴 ∈ V )
10 9 expcom ( 𝐵𝐶 → ( ( 𝐴𝐵 ) ∈ V → 𝐴 ∈ V ) )
11 1 10 impbid2 ( 𝐵𝐶 → ( 𝐴 ∈ V ↔ ( 𝐴𝐵 ) ∈ V ) )