Metamath Proof Explorer


Theorem difexg

Description: Existence of a difference. (Contributed by NM, 26-May-1998)

Ref Expression
Assertion difexg ( 𝐴𝑉 → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 difss ( 𝐴𝐵 ) ⊆ 𝐴
2 ssexg ( ( ( 𝐴𝐵 ) ⊆ 𝐴𝐴𝑉 ) → ( 𝐴𝐵 ) ∈ V )
3 1 2 mpan ( 𝐴𝑉 → ( 𝐴𝐵 ) ∈ V )