Metamath Proof Explorer
Description: Existence of a difference, inference version of difexg . (Contributed by Glauco Siliprandi, 3-Mar-2021) (Revised by AV, 26-Mar-2021)
|
|
Ref |
Expression |
|
Hypothesis |
difexi.1 |
⊢ 𝐴 ∈ V |
|
Assertion |
difexi |
⊢ ( 𝐴 ∖ 𝐵 ) ∈ V |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
difexi.1 |
⊢ 𝐴 ∈ V |
2 |
|
difexg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∖ 𝐵 ) ∈ V ) |
3 |
1 2
|
ax-mp |
⊢ ( 𝐴 ∖ 𝐵 ) ∈ V |