Metamath Proof Explorer


Theorem diffi

Description: If A is finite, ( A \ B ) is finite. (Contributed by FL, 3-Aug-2009)

Ref Expression
Assertion diffi ( 𝐴 ∈ Fin → ( 𝐴𝐵 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 difss ( 𝐴𝐵 ) ⊆ 𝐴
2 ssfi ( ( 𝐴 ∈ Fin ∧ ( 𝐴𝐵 ) ⊆ 𝐴 ) → ( 𝐴𝐵 ) ∈ Fin )
3 1 2 mpan2 ( 𝐴 ∈ Fin → ( 𝐴𝐵 ) ∈ Fin )