Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
2 |
|
nn0cn |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℂ ) |
3 |
1 2
|
anim12i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
5 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
7 |
6
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + - 𝐵 ) ) |
8 |
7
|
breq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐶 < ( 𝐴 − 𝐵 ) ↔ 𝐶 < ( 𝐴 + - 𝐵 ) ) ) |
9 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
10 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
11 |
|
nn0re |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) |
12 |
11
|
renegcld |
⊢ ( 𝐵 ∈ ℕ0 → - 𝐵 ∈ ℝ ) |
13 |
12
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → - 𝐵 ∈ ℝ ) |
14 |
10 13
|
readdcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + - 𝐵 ) ∈ ℝ ) |
15 |
11
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
16 |
10 15
|
readdcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
17 |
9 14 16
|
3jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ℝ ∧ ( 𝐴 + - 𝐵 ) ∈ ℝ ∧ ( 𝐴 + 𝐵 ) ∈ ℝ ) ) |
18 |
|
nn0negleid |
⊢ ( 𝐵 ∈ ℕ0 → - 𝐵 ≤ 𝐵 ) |
19 |
18
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → - 𝐵 ≤ 𝐵 ) |
20 |
13 15 10 19
|
leadd2dd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + - 𝐵 ) ≤ ( 𝐴 + 𝐵 ) ) |
21 |
17 20
|
lelttrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐶 < ( 𝐴 + - 𝐵 ) → 𝐶 < ( 𝐴 + 𝐵 ) ) ) |
22 |
8 21
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐶 < ( 𝐴 − 𝐵 ) → 𝐶 < ( 𝐴 + 𝐵 ) ) ) |