| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | nn0cn | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℂ ) | 
						
							| 3 | 1 2 | anim12i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ ) ) | 
						
							| 4 | 3 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ ) ) | 
						
							| 5 |  | negsub | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  +  - 𝐵 )  =  ( 𝐴  −  𝐵 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  +  - 𝐵 )  =  ( 𝐴  −  𝐵 ) ) | 
						
							| 7 | 6 | eqcomd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  −  𝐵 )  =  ( 𝐴  +  - 𝐵 ) ) | 
						
							| 8 | 7 | breq2d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  <  ( 𝐴  −  𝐵 )  ↔  𝐶  <  ( 𝐴  +  - 𝐵 ) ) ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℝ )  →  𝐶  ∈  ℝ ) | 
						
							| 10 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 11 |  | nn0re | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℝ ) | 
						
							| 12 | 11 | renegcld | ⊢ ( 𝐵  ∈  ℕ0  →  - 𝐵  ∈  ℝ ) | 
						
							| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℝ )  →  - 𝐵  ∈  ℝ ) | 
						
							| 14 | 10 13 | readdcld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  +  - 𝐵 )  ∈  ℝ ) | 
						
							| 15 | 11 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℝ )  →  𝐵  ∈  ℝ ) | 
						
							| 16 | 10 15 | readdcld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  +  𝐵 )  ∈  ℝ ) | 
						
							| 17 | 9 14 16 | 3jca | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  ∈  ℝ  ∧  ( 𝐴  +  - 𝐵 )  ∈  ℝ  ∧  ( 𝐴  +  𝐵 )  ∈  ℝ ) ) | 
						
							| 18 |  | nn0negleid | ⊢ ( 𝐵  ∈  ℕ0  →  - 𝐵  ≤  𝐵 ) | 
						
							| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℝ )  →  - 𝐵  ≤  𝐵 ) | 
						
							| 20 | 13 15 10 19 | leadd2dd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  +  - 𝐵 )  ≤  ( 𝐴  +  𝐵 ) ) | 
						
							| 21 | 17 20 | lelttrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  <  ( 𝐴  +  - 𝐵 )  →  𝐶  <  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 22 | 8 21 | sylbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  <  ( 𝐴  −  𝐵 )  →  𝐶  <  ( 𝐴  +  𝐵 ) ) ) |