Metamath Proof Explorer


Theorem difin

Description: Difference with intersection. Theorem 33 of Suppes p. 29. (Contributed by NM, 31-Mar-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion difin ( 𝐴 ∖ ( 𝐴𝐵 ) ) = ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 pm4.61 ( ¬ ( 𝑥𝐴𝑥𝐵 ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )
2 anclb ( ( 𝑥𝐴𝑥𝐵 ) ↔ ( 𝑥𝐴 → ( 𝑥𝐴𝑥𝐵 ) ) )
3 elin ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
4 3 imbi2i ( ( 𝑥𝐴𝑥 ∈ ( 𝐴𝐵 ) ) ↔ ( 𝑥𝐴 → ( 𝑥𝐴𝑥𝐵 ) ) )
5 iman ( ( 𝑥𝐴𝑥 ∈ ( 𝐴𝐵 ) ) ↔ ¬ ( 𝑥𝐴 ∧ ¬ 𝑥 ∈ ( 𝐴𝐵 ) ) )
6 2 4 5 3bitr2i ( ( 𝑥𝐴𝑥𝐵 ) ↔ ¬ ( 𝑥𝐴 ∧ ¬ 𝑥 ∈ ( 𝐴𝐵 ) ) )
7 6 con2bii ( ( 𝑥𝐴 ∧ ¬ 𝑥 ∈ ( 𝐴𝐵 ) ) ↔ ¬ ( 𝑥𝐴𝑥𝐵 ) )
8 eldif ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )
9 1 7 8 3bitr4i ( ( 𝑥𝐴 ∧ ¬ 𝑥 ∈ ( 𝐴𝐵 ) ) ↔ 𝑥 ∈ ( 𝐴𝐵 ) )
10 9 difeqri ( 𝐴 ∖ ( 𝐴𝐵 ) ) = ( 𝐴𝐵 )