Step |
Hyp |
Ref |
Expression |
1 |
|
eq0 |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) |
2 |
|
iman |
⊢ ( ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ↔ ¬ ( 𝑥 ∈ 𝐶 ∧ ¬ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ) |
3 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ↔ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) ) |
4 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
5 |
4
|
anbi2ci |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
6 |
|
annim |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ¬ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
7 |
6
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ) |
8 |
3 5 7
|
3bitri |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ) |
9 |
2 8
|
xchbinxr |
⊢ ( ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ↔ ¬ 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) |
10 |
|
ax-2 |
⊢ ( ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) ) |
11 |
9 10
|
sylbir |
⊢ ( ¬ 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) → ( ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) ) |
12 |
11
|
al2imi |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) → ∀ 𝑥 ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) ) |
13 |
|
dfss2 |
⊢ ( 𝐶 ⊆ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) ) |
14 |
|
dfss2 |
⊢ ( 𝐶 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) |
15 |
12 13 14
|
3imtr4g |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) → ( 𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵 ) ) |
16 |
1 15
|
sylbi |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) = ∅ → ( 𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵 ) ) |