| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eq0 |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) |
| 2 |
|
iman |
⊢ ( ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ↔ ¬ ( 𝑥 ∈ 𝐶 ∧ ¬ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ) |
| 3 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ↔ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) ) |
| 4 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 5 |
4
|
anbi2ci |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 6 |
|
annim |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ¬ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 7 |
6
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ) |
| 8 |
3 5 7
|
3bitri |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ) |
| 9 |
2 8
|
xchbinxr |
⊢ ( ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ↔ ¬ 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) |
| 10 |
|
ax-2 |
⊢ ( ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) ) |
| 11 |
9 10
|
sylbir |
⊢ ( ¬ 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) → ( ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) ) |
| 12 |
11
|
al2imi |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) → ∀ 𝑥 ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) ) |
| 13 |
|
df-ss |
⊢ ( 𝐶 ⊆ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) ) |
| 14 |
|
df-ss |
⊢ ( 𝐶 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) |
| 15 |
12 13 14
|
3imtr4g |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) → ( 𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵 ) ) |
| 16 |
1 15
|
sylbi |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) = ∅ → ( 𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵 ) ) |