| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) |
| 2 |
1
|
pm4.71d |
⊢ ( 𝐴 ⊆ 𝐶 → ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 3 |
2
|
anbi1d |
⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 4 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 5 |
|
ancom |
⊢ ( ( ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 6 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐶 ∖ 𝐵 ) ∩ 𝐴 ) ↔ ( 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) |
| 7 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 8 |
6 7
|
bianbi |
⊢ ( 𝑥 ∈ ( ( 𝐶 ∖ 𝐵 ) ∩ 𝐴 ) ↔ ( ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) |
| 9 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 10 |
5 8 9
|
3bitr4i |
⊢ ( 𝑥 ∈ ( ( 𝐶 ∖ 𝐵 ) ∩ 𝐴 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 11 |
3 4 10
|
3bitr4g |
⊢ ( 𝐴 ⊆ 𝐶 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐶 ∖ 𝐵 ) ∩ 𝐴 ) ) ) |
| 12 |
11
|
eqrdv |
⊢ ( 𝐴 ⊆ 𝐶 → ( 𝐴 ∖ 𝐵 ) = ( ( 𝐶 ∖ 𝐵 ) ∩ 𝐴 ) ) |