Step |
Hyp |
Ref |
Expression |
1 |
|
dfin3 |
⊢ ( 𝐵 ∩ 𝐶 ) = ( V ∖ ( ( V ∖ 𝐵 ) ∪ ( V ∖ 𝐶 ) ) ) |
2 |
1
|
difeq2i |
⊢ ( 𝐴 ∖ ( 𝐵 ∩ 𝐶 ) ) = ( 𝐴 ∖ ( V ∖ ( ( V ∖ 𝐵 ) ∪ ( V ∖ 𝐶 ) ) ) ) |
3 |
|
indi |
⊢ ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∪ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∪ ( 𝐴 ∩ ( V ∖ 𝐶 ) ) ) |
4 |
|
dfin2 |
⊢ ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∪ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∖ ( V ∖ ( ( V ∖ 𝐵 ) ∪ ( V ∖ 𝐶 ) ) ) ) |
5 |
|
invdif |
⊢ ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) |
6 |
|
invdif |
⊢ ( 𝐴 ∩ ( V ∖ 𝐶 ) ) = ( 𝐴 ∖ 𝐶 ) |
7 |
5 6
|
uneq12i |
⊢ ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∪ ( 𝐴 ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∖ 𝐶 ) ) |
8 |
3 4 7
|
3eqtr3i |
⊢ ( 𝐴 ∖ ( V ∖ ( ( V ∖ 𝐵 ) ∪ ( V ∖ 𝐶 ) ) ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∖ 𝐶 ) ) |
9 |
2 8
|
eqtri |
⊢ ( 𝐴 ∖ ( 𝐵 ∩ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∖ 𝐶 ) ) |