Step |
Hyp |
Ref |
Expression |
1 |
|
difmapsn.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
difmapsn.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
difmapsn.v |
⊢ ( 𝜑 → 𝐶 ∈ 𝑍 ) |
4 |
|
eldifi |
⊢ ( 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) → 𝑓 ∈ ( 𝐴 ↑m { 𝐶 } ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) → 𝑓 ∈ ( 𝐴 ↑m { 𝐶 } ) ) |
6 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝐴 ↑m { 𝐶 } ) → 𝑓 : { 𝐶 } ⟶ 𝐴 ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ↑m { 𝐶 } ) ) → 𝑓 : { 𝐶 } ⟶ 𝐴 ) |
8 |
|
fsn2g |
⊢ ( 𝐶 ∈ 𝑍 → ( 𝑓 : { 𝐶 } ⟶ 𝐴 ↔ ( ( 𝑓 ‘ 𝐶 ) ∈ 𝐴 ∧ 𝑓 = { 〈 𝐶 , ( 𝑓 ‘ 𝐶 ) 〉 } ) ) ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → ( 𝑓 : { 𝐶 } ⟶ 𝐴 ↔ ( ( 𝑓 ‘ 𝐶 ) ∈ 𝐴 ∧ 𝑓 = { 〈 𝐶 , ( 𝑓 ‘ 𝐶 ) 〉 } ) ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ↑m { 𝐶 } ) ) → ( 𝑓 : { 𝐶 } ⟶ 𝐴 ↔ ( ( 𝑓 ‘ 𝐶 ) ∈ 𝐴 ∧ 𝑓 = { 〈 𝐶 , ( 𝑓 ‘ 𝐶 ) 〉 } ) ) ) |
11 |
7 10
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ↑m { 𝐶 } ) ) → ( ( 𝑓 ‘ 𝐶 ) ∈ 𝐴 ∧ 𝑓 = { 〈 𝐶 , ( 𝑓 ‘ 𝐶 ) 〉 } ) ) |
12 |
11
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ↑m { 𝐶 } ) ) → ( 𝑓 ‘ 𝐶 ) ∈ 𝐴 ) |
13 |
5 12
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) → ( 𝑓 ‘ 𝐶 ) ∈ 𝐴 ) |
14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) ∧ ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ) → ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ) |
15 |
11
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 ↑m { 𝐶 } ) ) → 𝑓 = { 〈 𝐶 , ( 𝑓 ‘ 𝐶 ) 〉 } ) |
16 |
5 15
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) → 𝑓 = { 〈 𝐶 , ( 𝑓 ‘ 𝐶 ) 〉 } ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) ∧ ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ) → 𝑓 = { 〈 𝐶 , ( 𝑓 ‘ 𝐶 ) 〉 } ) |
18 |
14 17
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) ∧ ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ) → ( ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ∧ 𝑓 = { 〈 𝐶 , ( 𝑓 ‘ 𝐶 ) 〉 } ) ) |
19 |
|
fsn2g |
⊢ ( 𝐶 ∈ 𝑍 → ( 𝑓 : { 𝐶 } ⟶ 𝐵 ↔ ( ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ∧ 𝑓 = { 〈 𝐶 , ( 𝑓 ‘ 𝐶 ) 〉 } ) ) ) |
20 |
3 19
|
syl |
⊢ ( 𝜑 → ( 𝑓 : { 𝐶 } ⟶ 𝐵 ↔ ( ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ∧ 𝑓 = { 〈 𝐶 , ( 𝑓 ‘ 𝐶 ) 〉 } ) ) ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) ∧ ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ) → ( 𝑓 : { 𝐶 } ⟶ 𝐵 ↔ ( ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ∧ 𝑓 = { 〈 𝐶 , ( 𝑓 ‘ 𝐶 ) 〉 } ) ) ) |
22 |
18 21
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) ∧ ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ) → 𝑓 : { 𝐶 } ⟶ 𝐵 ) |
23 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) ∧ ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ) → 𝐵 ∈ 𝑊 ) |
24 |
|
snex |
⊢ { 𝐶 } ∈ V |
25 |
24
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) ∧ ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ) → { 𝐶 } ∈ V ) |
26 |
23 25
|
elmapd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) ∧ ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ) → ( 𝑓 ∈ ( 𝐵 ↑m { 𝐶 } ) ↔ 𝑓 : { 𝐶 } ⟶ 𝐵 ) ) |
27 |
22 26
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) ∧ ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ) → 𝑓 ∈ ( 𝐵 ↑m { 𝐶 } ) ) |
28 |
|
eldifn |
⊢ ( 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) → ¬ 𝑓 ∈ ( 𝐵 ↑m { 𝐶 } ) ) |
29 |
28
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) ∧ ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ) → ¬ 𝑓 ∈ ( 𝐵 ↑m { 𝐶 } ) ) |
30 |
27 29
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) → ¬ ( 𝑓 ‘ 𝐶 ) ∈ 𝐵 ) |
31 |
13 30
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) → ( 𝑓 ‘ 𝐶 ) ∈ ( 𝐴 ∖ 𝐵 ) ) |
32 |
31 16
|
jca |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) → ( ( 𝑓 ‘ 𝐶 ) ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑓 = { 〈 𝐶 , ( 𝑓 ‘ 𝐶 ) 〉 } ) ) |
33 |
|
fsn2g |
⊢ ( 𝐶 ∈ 𝑍 → ( 𝑓 : { 𝐶 } ⟶ ( 𝐴 ∖ 𝐵 ) ↔ ( ( 𝑓 ‘ 𝐶 ) ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑓 = { 〈 𝐶 , ( 𝑓 ‘ 𝐶 ) 〉 } ) ) ) |
34 |
3 33
|
syl |
⊢ ( 𝜑 → ( 𝑓 : { 𝐶 } ⟶ ( 𝐴 ∖ 𝐵 ) ↔ ( ( 𝑓 ‘ 𝐶 ) ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑓 = { 〈 𝐶 , ( 𝑓 ‘ 𝐶 ) 〉 } ) ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) → ( 𝑓 : { 𝐶 } ⟶ ( 𝐴 ∖ 𝐵 ) ↔ ( ( 𝑓 ‘ 𝐶 ) ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑓 = { 〈 𝐶 , ( 𝑓 ‘ 𝐶 ) 〉 } ) ) ) |
36 |
32 35
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) → 𝑓 : { 𝐶 } ⟶ ( 𝐴 ∖ 𝐵 ) ) |
37 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) |
38 |
1 37
|
ssexd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ∈ V ) |
39 |
24
|
a1i |
⊢ ( 𝜑 → { 𝐶 } ∈ V ) |
40 |
38 39
|
elmapd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ( 𝐴 ∖ 𝐵 ) ↑m { 𝐶 } ) ↔ 𝑓 : { 𝐶 } ⟶ ( 𝐴 ∖ 𝐵 ) ) ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) → ( 𝑓 ∈ ( ( 𝐴 ∖ 𝐵 ) ↑m { 𝐶 } ) ↔ 𝑓 : { 𝐶 } ⟶ ( 𝐴 ∖ 𝐵 ) ) ) |
42 |
36 41
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) → 𝑓 ∈ ( ( 𝐴 ∖ 𝐵 ) ↑m { 𝐶 } ) ) |
43 |
42
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) 𝑓 ∈ ( ( 𝐴 ∖ 𝐵 ) ↑m { 𝐶 } ) ) |
44 |
|
dfss3 |
⊢ ( ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ⊆ ( ( 𝐴 ∖ 𝐵 ) ↑m { 𝐶 } ) ↔ ∀ 𝑓 ∈ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) 𝑓 ∈ ( ( 𝐴 ∖ 𝐵 ) ↑m { 𝐶 } ) ) |
45 |
43 44
|
sylibr |
⊢ ( 𝜑 → ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ⊆ ( ( 𝐴 ∖ 𝐵 ) ↑m { 𝐶 } ) ) |
46 |
3
|
snn0d |
⊢ ( 𝜑 → { 𝐶 } ≠ ∅ ) |
47 |
1 2 39 46
|
difmap |
⊢ ( 𝜑 → ( ( 𝐴 ∖ 𝐵 ) ↑m { 𝐶 } ) ⊆ ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) ) |
48 |
45 47
|
eqssd |
⊢ ( 𝜑 → ( ( 𝐴 ↑m { 𝐶 } ) ∖ ( 𝐵 ↑m { 𝐶 } ) ) = ( ( 𝐴 ∖ 𝐵 ) ↑m { 𝐶 } ) ) |