Step |
Hyp |
Ref |
Expression |
1 |
|
indif2 |
⊢ ( 𝐴 ∩ ( ℝ ∖ 𝐵 ) ) = ( ( 𝐴 ∩ ℝ ) ∖ 𝐵 ) |
2 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
3 |
|
df-ss |
⊢ ( 𝐴 ⊆ ℝ ↔ ( 𝐴 ∩ ℝ ) = 𝐴 ) |
4 |
2 3
|
sylib |
⊢ ( 𝐴 ∈ dom vol → ( 𝐴 ∩ ℝ ) = 𝐴 ) |
5 |
4
|
difeq1d |
⊢ ( 𝐴 ∈ dom vol → ( ( 𝐴 ∩ ℝ ) ∖ 𝐵 ) = ( 𝐴 ∖ 𝐵 ) ) |
6 |
1 5
|
syl5eq |
⊢ ( 𝐴 ∈ dom vol → ( 𝐴 ∩ ( ℝ ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∩ ( ℝ ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) ) |
8 |
|
cmmbl |
⊢ ( 𝐵 ∈ dom vol → ( ℝ ∖ 𝐵 ) ∈ dom vol ) |
9 |
|
inmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( ℝ ∖ 𝐵 ) ∈ dom vol ) → ( 𝐴 ∩ ( ℝ ∖ 𝐵 ) ) ∈ dom vol ) |
10 |
8 9
|
sylan2 |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∩ ( ℝ ∖ 𝐵 ) ) ∈ dom vol ) |
11 |
7 10
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∖ 𝐵 ) ∈ dom vol ) |