| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscld.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | elssuni | ⊢ ( 𝐴  ∈  𝐽  →  𝐴  ⊆  ∪  𝐽 ) | 
						
							| 3 | 2 1 | sseqtrrdi | ⊢ ( 𝐴  ∈  𝐽  →  𝐴  ⊆  𝑋 ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐴  ∈  𝐽  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 ) )  →  𝐴  ⊆  𝑋 ) | 
						
							| 5 |  | dfss2 | ⊢ ( 𝐴  ⊆  𝑋  ↔  ( 𝐴  ∩  𝑋 )  =  𝐴 ) | 
						
							| 6 | 4 5 | sylib | ⊢ ( ( 𝐴  ∈  𝐽  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐴  ∩  𝑋 )  =  𝐴 ) | 
						
							| 7 | 6 | difeq1d | ⊢ ( ( 𝐴  ∈  𝐽  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ( 𝐴  ∩  𝑋 )  ∖  𝐵 )  =  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 8 |  | indif2 | ⊢ ( 𝐴  ∩  ( 𝑋  ∖  𝐵 ) )  =  ( ( 𝐴  ∩  𝑋 )  ∖  𝐵 ) | 
						
							| 9 |  | cldrcl | ⊢ ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐴  ∈  𝐽  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 ) )  →  𝐽  ∈  Top ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝐴  ∈  𝐽  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 ) )  →  𝐴  ∈  𝐽 ) | 
						
							| 12 | 1 | cldopn | ⊢ ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  →  ( 𝑋  ∖  𝐵 )  ∈  𝐽 ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝐴  ∈  𝐽  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑋  ∖  𝐵 )  ∈  𝐽 ) | 
						
							| 14 |  | inopn | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝐽  ∧  ( 𝑋  ∖  𝐵 )  ∈  𝐽 )  →  ( 𝐴  ∩  ( 𝑋  ∖  𝐵 ) )  ∈  𝐽 ) | 
						
							| 15 | 10 11 13 14 | syl3anc | ⊢ ( ( 𝐴  ∈  𝐽  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐴  ∩  ( 𝑋  ∖  𝐵 ) )  ∈  𝐽 ) | 
						
							| 16 | 8 15 | eqeltrrid | ⊢ ( ( 𝐴  ∈  𝐽  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ( 𝐴  ∩  𝑋 )  ∖  𝐵 )  ∈  𝐽 ) | 
						
							| 17 | 7 16 | eqeltrrd | ⊢ ( ( 𝐴  ∈  𝐽  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐴  ∖  𝐵 )  ∈  𝐽 ) |