Step |
Hyp |
Ref |
Expression |
1 |
|
iscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
elssuni |
⊢ ( 𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽 ) |
3 |
2 1
|
sseqtrrdi |
⊢ ( 𝐴 ∈ 𝐽 → 𝐴 ⊆ 𝑋 ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐴 ⊆ 𝑋 ) |
5 |
|
df-ss |
⊢ ( 𝐴 ⊆ 𝑋 ↔ ( 𝐴 ∩ 𝑋 ) = 𝐴 ) |
6 |
4 5
|
sylib |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∩ 𝑋 ) = 𝐴 ) |
7 |
6
|
difeq1d |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝐴 ∩ 𝑋 ) ∖ 𝐵 ) = ( 𝐴 ∖ 𝐵 ) ) |
8 |
|
indif2 |
⊢ ( 𝐴 ∩ ( 𝑋 ∖ 𝐵 ) ) = ( ( 𝐴 ∩ 𝑋 ) ∖ 𝐵 ) |
9 |
|
cldrcl |
⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐽 ∈ Top ) |
11 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐴 ∈ 𝐽 ) |
12 |
1
|
cldopn |
⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋 ∖ 𝐵 ) ∈ 𝐽 ) |
13 |
12
|
adantl |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ 𝐵 ) ∈ 𝐽 ) |
14 |
|
inopn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ ( 𝑋 ∖ 𝐵 ) ∈ 𝐽 ) → ( 𝐴 ∩ ( 𝑋 ∖ 𝐵 ) ) ∈ 𝐽 ) |
15 |
10 11 13 14
|
syl3anc |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∩ ( 𝑋 ∖ 𝐵 ) ) ∈ 𝐽 ) |
16 |
8 15
|
eqeltrrid |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝐴 ∩ 𝑋 ) ∖ 𝐵 ) ∈ 𝐽 ) |
17 |
7 16
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∖ 𝐵 ) ∈ 𝐽 ) |