Metamath Proof Explorer


Theorem difpr

Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018)

Ref Expression
Assertion difpr ( 𝐴 ∖ { 𝐵 , 𝐶 } ) = ( ( 𝐴 ∖ { 𝐵 } ) ∖ { 𝐶 } )

Proof

Step Hyp Ref Expression
1 df-pr { 𝐵 , 𝐶 } = ( { 𝐵 } ∪ { 𝐶 } )
2 1 difeq2i ( 𝐴 ∖ { 𝐵 , 𝐶 } ) = ( 𝐴 ∖ ( { 𝐵 } ∪ { 𝐶 } ) )
3 difun1 ( 𝐴 ∖ ( { 𝐵 } ∪ { 𝐶 } ) ) = ( ( 𝐴 ∖ { 𝐵 } ) ∖ { 𝐶 } )
4 2 3 eqtri ( 𝐴 ∖ { 𝐵 , 𝐶 } ) = ( ( 𝐴 ∖ { 𝐵 } ) ∖ { 𝐶 } )