Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | difpr | ⊢ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) = ( ( 𝐴 ∖ { 𝐵 } ) ∖ { 𝐶 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr | ⊢ { 𝐵 , 𝐶 } = ( { 𝐵 } ∪ { 𝐶 } ) | |
2 | 1 | difeq2i | ⊢ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) = ( 𝐴 ∖ ( { 𝐵 } ∪ { 𝐶 } ) ) |
3 | difun1 | ⊢ ( 𝐴 ∖ ( { 𝐵 } ∪ { 𝐶 } ) ) = ( ( 𝐴 ∖ { 𝐵 } ) ∖ { 𝐶 } ) | |
4 | 2 3 | eqtri | ⊢ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) = ( ( 𝐴 ∖ { 𝐵 } ) ∖ { 𝐶 } ) |