Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | difprsn2 | ⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐴 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom | ⊢ { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 } | |
2 | 1 | difeq1i | ⊢ ( { 𝐴 , 𝐵 } ∖ { 𝐵 } ) = ( { 𝐵 , 𝐴 } ∖ { 𝐵 } ) |
3 | necom | ⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) | |
4 | difprsn1 | ⊢ ( 𝐵 ≠ 𝐴 → ( { 𝐵 , 𝐴 } ∖ { 𝐵 } ) = { 𝐴 } ) | |
5 | 3 4 | sylbi | ⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐵 , 𝐴 } ∖ { 𝐵 } ) = { 𝐴 } ) |
6 | 2 5 | eqtrid | ⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐴 } ) |