Metamath Proof Explorer


Theorem difprsn2

Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017)

Ref Expression
Assertion difprsn2 ( 𝐴𝐵 → ( { 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐴 } )

Proof

Step Hyp Ref Expression
1 prcom { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 }
2 1 difeq1i ( { 𝐴 , 𝐵 } ∖ { 𝐵 } ) = ( { 𝐵 , 𝐴 } ∖ { 𝐵 } )
3 necom ( 𝐴𝐵𝐵𝐴 )
4 difprsn1 ( 𝐵𝐴 → ( { 𝐵 , 𝐴 } ∖ { 𝐵 } ) = { 𝐴 } )
5 3 4 sylbi ( 𝐴𝐵 → ( { 𝐵 , 𝐴 } ∖ { 𝐵 } ) = { 𝐴 } )
6 2 5 eqtrid ( 𝐴𝐵 → ( { 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐴 } )