Step |
Hyp |
Ref |
Expression |
1 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } |
2 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } |
3 |
1 2
|
difeq12i |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∖ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∖ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ) |
4 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ ¬ 𝜓 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ ¬ 𝜓 ) ) } |
5 |
|
difab |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∖ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ) = { 𝑥 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) } |
6 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ ¬ 𝜓 ) ) ) |
7 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝜓 ) |
8 |
7
|
con3i |
⊢ ( ¬ 𝜓 → ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
9 |
8
|
anim2i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ 𝜓 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
10 |
|
pm3.2 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜓 → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝜓 → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
12 |
11
|
con3d |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ¬ 𝜓 ) ) |
13 |
12
|
imdistani |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ 𝜓 ) ) |
14 |
9 13
|
impbii |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ 𝜓 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
15 |
6 14
|
bitr3i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
16 |
15
|
abbii |
⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ ¬ 𝜓 ) ) } = { 𝑥 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) } |
17 |
5 16
|
eqtr4i |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∖ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ ¬ 𝜓 ) ) } |
18 |
4 17
|
eqtr4i |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ ¬ 𝜓 ) } = ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∖ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ) |
19 |
3 18
|
eqtr4i |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∖ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ ¬ 𝜓 ) } |