Metamath Proof Explorer


Theorem difrp

Description: Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014)

Ref Expression
Assertion difrp ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐵𝐴 ) ∈ ℝ+ ) )

Proof

Step Hyp Ref Expression
1 posdif ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵𝐴 ) ) )
2 resubcl ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵𝐴 ) ∈ ℝ )
3 2 ancoms ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵𝐴 ) ∈ ℝ )
4 elrp ( ( 𝐵𝐴 ) ∈ ℝ+ ↔ ( ( 𝐵𝐴 ) ∈ ℝ ∧ 0 < ( 𝐵𝐴 ) ) )
5 4 baib ( ( 𝐵𝐴 ) ∈ ℝ → ( ( 𝐵𝐴 ) ∈ ℝ+ ↔ 0 < ( 𝐵𝐴 ) ) )
6 3 5 syl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵𝐴 ) ∈ ℝ+ ↔ 0 < ( 𝐵𝐴 ) ) )
7 1 6 bitr4d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐵𝐴 ) ∈ ℝ+ ) )