Description: Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difrp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐵 − 𝐴 ) ∈ ℝ+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posdif | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) | |
| 2 | resubcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 4 | elrp | ⊢ ( ( 𝐵 − 𝐴 ) ∈ ℝ+ ↔ ( ( 𝐵 − 𝐴 ) ∈ ℝ ∧ 0 < ( 𝐵 − 𝐴 ) ) ) | |
| 5 | 4 | baib | ⊢ ( ( 𝐵 − 𝐴 ) ∈ ℝ → ( ( 𝐵 − 𝐴 ) ∈ ℝ+ ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| 6 | 3 5 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 − 𝐴 ) ∈ ℝ+ ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| 7 | 1 6 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐵 − 𝐴 ) ∈ ℝ+ ) ) |