Metamath Proof Explorer


Theorem difsn

Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion difsn ( ¬ 𝐴𝐵 → ( 𝐵 ∖ { 𝐴 } ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 eldifsn ( 𝑥 ∈ ( 𝐵 ∖ { 𝐴 } ) ↔ ( 𝑥𝐵𝑥𝐴 ) )
2 simpl ( ( 𝑥𝐵𝑥𝐴 ) → 𝑥𝐵 )
3 nelelne ( ¬ 𝐴𝐵 → ( 𝑥𝐵𝑥𝐴 ) )
4 3 ancld ( ¬ 𝐴𝐵 → ( 𝑥𝐵 → ( 𝑥𝐵𝑥𝐴 ) ) )
5 2 4 impbid2 ( ¬ 𝐴𝐵 → ( ( 𝑥𝐵𝑥𝐴 ) ↔ 𝑥𝐵 ) )
6 1 5 syl5bb ( ¬ 𝐴𝐵 → ( 𝑥 ∈ ( 𝐵 ∖ { 𝐴 } ) ↔ 𝑥𝐵 ) )
7 6 eqrdv ( ¬ 𝐴𝐵 → ( 𝐵 ∖ { 𝐴 } ) = 𝐵 )