Description: ( B \ { A } ) equals B if and only if A is not a member of B . Generalization of difsn . (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | difsnb | ⊢ ( ¬ 𝐴 ∈ 𝐵 ↔ ( 𝐵 ∖ { 𝐴 } ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsn | ⊢ ( ¬ 𝐴 ∈ 𝐵 → ( 𝐵 ∖ { 𝐴 } ) = 𝐵 ) | |
2 | neldifsnd | ⊢ ( 𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ ( 𝐵 ∖ { 𝐴 } ) ) | |
3 | nelne1 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ ( 𝐵 ∖ { 𝐴 } ) ) → 𝐵 ≠ ( 𝐵 ∖ { 𝐴 } ) ) | |
4 | 2 3 | mpdan | ⊢ ( 𝐴 ∈ 𝐵 → 𝐵 ≠ ( 𝐵 ∖ { 𝐴 } ) ) |
5 | 4 | necomd | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 ∖ { 𝐴 } ) ≠ 𝐵 ) |
6 | 5 | necon2bi | ⊢ ( ( 𝐵 ∖ { 𝐴 } ) = 𝐵 → ¬ 𝐴 ∈ 𝐵 ) |
7 | 1 6 | impbii | ⊢ ( ¬ 𝐴 ∈ 𝐵 ↔ ( 𝐵 ∖ { 𝐴 } ) = 𝐵 ) |